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Linear Regression |l

Bayesian linear regression

Model comparison and hypothesis testing
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» Comparison of alternative
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Regression

Linear regression:
» Making predictions

» Comparison of alternative
models

Bayesian and regularized regression:
» Uncertainty in model parameters

» Generalized basis functions




Further reading, useful material

» Christopher M. Bishop: Pattern Recognition and Machine learning

» Sam Roweis: Gaussian identities
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Regression

Noise model and likelihood

» Given a dataset D = {a:n,yn}n 1, where ¢, = {x,1,...,2yp} is D
dimensional (for example D SNPs), fit parameters 8 of a regressor f
with added Gaussian noise:

Yn = f(20;0) + €, where p(e|o?) =N (e]0,0%).

» Equivalent likelihood formulation:

y’X HN yn’f(wna) 2)

n=1



Regression

Choosing a regressor

» Choose f to be linear:

N
Py X)=T[N (ol 2w B+co?)

n=1

» Consider bias free case, ¢ = 0,
otherwise include an additional
column of ones in each x,,.



Regression

Choosing a regressor

» Choose f to be linear:

N
py|X) =[N (v | - B+c,0%) &—-(8)

n=1

» Consider bias free case, ¢ = 0,

otherwise include an additional
column of ones in each x,,.

N

Equivalent graphical model



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
np(y|B, X,0%) = N (y, | @, B,0%)

n=1

N
N 1
2751n27ra272—z_: —x, - B)?

Sum of squares
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Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
np(y|B, X,0%) = N (y, | @, B,0%)

n=1

N
N 1
2751n27ra272—z_: —x, - B)?

Sum of squares

» The likelihood is maximized when the squared error is minimized.

» Least squares and maximum likelihood are equivalent.



Linear Regression and Least Squares

'y yn
y
f(xn. B)
Xn X

(C.M. Bishop, Pattern Recognition and Machine Learning)

N

EB) == (o — 20 B)?

n=1



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d N
a5, nrw|B.0%) = Z%Z — @, B)°

1N
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Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d_| o d 1 & )
15w 1B.0%) = —ﬁzzxyn—mnﬂ)

| X
» Set gradient w.r.t to 3 to zero

N
1
Vglnp(ylﬁ,UZ) = ?zml(yn — I /6) =0
n=1

— B =(X"X)'XTy
N————

Pseudo inverse



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d_| o d 1 & )
15w 1B.0%) = —@Zj(yn—mnﬂ)

1N
- 53— A

» Set gradient w.r.t to 3 to zero

N
1
Vglnp(ylﬁ,UZ) = ?zml(yn — I /6) =0
n=1

— B =(X"X)'XTy
———
Pseudo inverse
x1,1 N xl, D
» Here, the matrix X is defined as X =
TN,1 NN IN.D



Polynomial Curve Fitting

Motivation

» Non-linear relationships.

» Multiple SNPs playing a role for
a particular phenotype.




Polynomial Curve Fitting

Univariate input x

> Use the polynomials up to degree K to construct new features from x

f(x,B8) = Bo + Prx + foa® + - + Bra™
K
= bBudi(z) = d(x)B
k=1

where we defined ¢(z) = (1,z,2°,...,z").

(C.M. Bishop, Pattern Recognition

and Machine Learning)
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Polynomial Curve Fitting
Univariate input x

> Use the polynomials up to degree K to construct new features from x

f(x,B8) = Bo + Prx + foa® + - + Bra™
K
= Brdn(z) = ¢(2)B
k=1
where we defined ¢(z) = (1, =, x2’ o ’mK)_

¢ can be any feature mapping:

T 1

> 6i(2) = ¢, 6;(@) = log(a), ... A0 )
> Radial basis functions (also: ‘Gaussian’ basis functions) 0.75 \\‘ / \ \‘:‘ /

T — )2 05 “\‘ ‘s“\
¢j(x) = exp (—(272”)) VY

S \ c \

025/ NAN AN

aaaa
o \
-1 0 1

(C.M. Bishop, Pattern Recognition
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Polynomial Curve Fitting

Univariate input x

> Use the polynomials up to degree K to construct new features from x

f(x,B8) = Bo + Prx + foa® + - + Bra™
K
= bBudi(z) = d(x)B
k=1

where we defined ¢(z) = (1,z,2°,...,z").

¢ can be any feature mapping:

z 1
> ¢i(z) =€, ¢j(x) = log(), ...
> Radial basis functions (also: ‘Gaussian’ basis functions) 0781
(x — ) 05|
o) = oxp (00
0.25

» Sigmoidal basis functions

T — [ 1
b =0 (F1), where o(a) = s
p (C.M. Bishop, Pattern Recognition

and Machine Learning)



Polynomial Curve Fitting
Overfitting

» The order of the polynomial M is crucial to avoid under- and
overfitting.

1 o M=0
t
o o)
O \vJ
ol 7
o
_l,
0 . 1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Polynomial Curve Fitting

Overfitting

» The order of the polynomial M is crucial to avoid under- and

overfitting.

» Observation: Variance in regression coefficients 3 = [wy, . .

grows dramatically with M

M=0 M=1 M=6 M=9
wg | 019 082 031 035
w 2127 799 23237
wh 2543 -5321.83
w 1737 4856831
wy -231639.30
wy 640042.26
wy -1061800.52
w 1042400.18
wi -557682.99
wy 125201.43

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Polynomial Curve Fitting

Generalization performance
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Generalization performance
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» Root-mean squared error
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Polynomial Curve Fitting

Generalization performance

» Root-mean squared error

Erns = V2E(B)/N

= (Z(yn — Tn /3)2> /N

n=1

» Can be measured on training data

> Or when predicting new data (test data)

—=©— Training
—&— Test

(C.M. Bishop, Pattern Recognition and Machine

Learning)



Polynomial Curve Fitting

Generalization performance

N
1
E(B) =5 (yn—xnB)°
n=1
» Root-mean squared error 1
—=©— Training
Erns = V2E(B)/N
N E’us
= Z(yn_wn'ﬁp /N
n=1
0 0 3 6 9
» Can be measured on training data M
» Or when predicting new data (teSt data) (C.M. Bishop, Pattern Recognition and Machine
» Underfitting: large Egus on train and test ="

data



Polynomial Curve Fitting

Generalization performance

N
1 2
E(B) = 5;1(% )
» Root-mean squared error 1

—=©— Training
—&— Test

Erns = V2E(B)/N

(Z(yn_wn'ﬂP) /N o

n=1

» Can be measured on training data

» Or when predicting new data (teSt data) (C.M. Bishop, Pattern Recognition and Machine

Learning)

> Underfitting: large Eryg on train and test
data

» Overfitting: small Erys on train and large
FERrms on test data.



Polynomial Curve Fitting
Overfitting

» The number N of training data is crucial to accurately estimate many
parameters without overfitting.

T
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Multivariate regression

Polynomial curve fitting

f(x,8) = Bo+piz+ -+ Brx™
K
= Beor(x)
k=1
= ¢(z) - B,

High dimensional regression

D
f@,8)=>_ Baza
d=1



Multivariate regression

Polynomial curve fitting High dimensional regression

f(x,8) = Bo+piz+ -+ Brx™
K
= Brdr(x)
k=1
= ¢(z) - B,

D
f@,8)=>_ Baza
d=1

» Note: When fitting a single binary variable x;, a linear model is most
general!



Regularized Least Squares

Ridge regression

» Solutions to avoid overfitting:
1. Intelligently choose number of parameters
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Regularized Least Squares

Ridge regression

» Solutions to avoid overfitting:

1. Intelligently choose number of parameters
2. Get more data
3. Regularize the regression weights 3

» Quadratically regularized objective function

=13 - e 92+ D070
n=1 ——

Regularizer

Squared error



Polynomial curve fitting

L2 regularization

» M =9, different )\ values

T

(C.M. Bishop, Pattern Recognition and Machine Learning)



Polynomial curve fitting

L2 regularization

» M =9, different )\ values

T

(C.M. Bishop, Pattern Recognition and Machine Learning)



Polynomial curve fitting

L2 regularization

» M =9, different )\ values

1r o InA=0
t
(0]
ol 7 o0
o
_1.
0

T

(C.M. Bishop, Pattern Recognition and Machine Learning)



Polynomial curve fitting

L2 regularization

» M =9, different \ values

InA=—-00 InA=-18 InA=10
wg 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w} -5321.83 -0.77 -0.06
w} 48568.31 -31.97 -0.05
wy | -231639.30 -3.89 -0.03
wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
w} | 1042400.18 -45.95 -0.00
wy | -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01

(C.M. Bishop, Pattern Recognition and Machine Learning)



Polynomial curve fitting

L2 regularization

» M =9, different )\ values

1
Training
Test
E 0.5
O /.— n n 1
-35 =30 ;.\ 725 -20

(C.M. Bishop, Pattern Recognition and Machine Learning)



Bias-variance tradeoff

Variance of f** Bias of f°t

Ep [fest ) [fest]2] Ep [ftrue _ fest]
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Bias-variance tradeoff

Variance of f** Bias of f°t
e & 2 rue €S
Ep[ft—E[f‘]] Ep [f™ — f*']
Estimated functions Mean over all estimates
1 1
In\ =26

0 1 0
Experiment:

» 100 random data sets (/N = 25)

» learn 25 RBF basis functions

> vary A\
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Variance of f** Bias of f°t
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Bias-variance tradeoff

Variance of f**

Ep [fest _E [fest] 2]

Estimated functions

0 1
Experiment:
» 100 random data sets (/N = 25)
» learn 25 RBF basis functions

> vary A\

Bias of f°*

IED [ftrue _ fest]

Mean over all estimates

Empirical Observations:

» Bias decreases with smaller A

(C.M. Bishop, Pattern Recognition and Machine Learning)



Bias-variance tradeoff

Variance of f**

Ep [fest _E [fest] 2]

Estimated functions

0 1
Experiment:
» 100 random data sets (/N = 25)
» learn 25 RBF basis functions

> vary A\

Bias of f°*

IED [ftrue _ fest]

Mean over all estimates

Empirical Observations:
» Bias decreases with smaller A

» Variance increases with smaller A

(C.M. Bishop, Pattern Recognition and Machine Learning)



Bias-variance tradeoff

Effect on mean squared error

yn — ftrue(frn) +€n

mean squared error(f*") = Ep [(y — feSt(l’))ﬂ

= (bias)? + variance + noise
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> 100 random data sets (N = 25)
> learn 25 RBF basis functions

> vary A
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Bias-variance tradeoff

Effect on mean squared error

yn — ftrue(frn) +€n

mean squared error(f*") = Ep [(y — feSt(x)f]

= (bias)? + variance + noise

Experiment as before:

>

>
>
>

100 random data sets (IV = 25)
learn 25 RBF basis functions
vary A

Compute sample estimates of bias and
variance

Additionally 1000 test data points to
estimate mean-squared error

0.15
(bias}
0.12 variance
(bias)2 + variance
0.09 EES[L/
0.06
- %
0
-3 -2 -1 0 1 2

In A

(C.M. Bishop, Pattern Recognition and Machine Learning)



Regularized Least Squares

More general regularizers

» More general regularization:

1
5 Z
n=1

\]

. 3)2 AD q
()-8 + 2 1]
d=1

~~

Squared error

~
Regularizer



Regularized Least Squares

More general regularizers

» More general regularization:

1 D
B ST P
n=1 d=1

~~ v~

Squared error Regularizer

\]

o
<

(C.M. Bishop, Pattern Recognition and Machine Learning)



Regularized Least Squares

More general regularizers

» More general regularization:

1 D
B ST P
n=1 d=1

Vv Vo
Squared error Regularizer
¢ sparse

Y qg=1 \J/ q=4
Lasso Quadratic

(C.M. Bishop, Pattern Recognition and Machine Learning)



Regularized Least Squares

More general regularizers

» More general regularization:

1 D
B ST P
n=1 d=1

2
Squared error Regularizer
» g < 1: non-differentiable
¢ sparse

Y qg=1 W q=4
Lasso Quadratic

(C.M. Bishop, Pattern Recognition and Machine Learning)



Regularized Least Squares

More general regularizers

» More general regularization:

1 D
B ST P
n=1 d=1

Squared error Regularizer

[\)

» g < 1: non-differentiable
» ¢ < 1: non-convex (could have local optima)

¢ sparse
] 1 ‘ ‘
q=0.5 qg=1 q=2 q=4
Lasso Quadratic

(C.M. Bishop, Pattern Recognition and Machine Learning)



Smaller ¢ yields sparser solution 3*

» ¢ = 2: Ridge regression (L3)

B

>

» Regularizer

~
N

(C.M. Bishop, Pattern Recognition and Machine Learning)



Smaller ¢ yields sparser solution 3*

» ¢ = 2: Ridge regression (L3)

» ¢ =1: Lasso (L1)

B

>

» Regularizer

B2

p
N

B*
RN/

(C.M. Bishop, Pattern Recognition and Machine Learning)

B
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> Linear Regression: squared loss, squared regularizer.
» Support Vector Machine: hinge loss, squared regularizer.
» Lasso: squared loss, L1 regularizer.
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> Inference: minimize the cost function E(3), yielding a point estimate

for 3.



Loss functions and related methods

» Even more general: general loss function

1 A&
E(B) = > Liyn — d(zn) - B) + 5 > 1Bl
n=1 d=1

Loss Regularizer

» Many state-of-the-art machine learning methods can be expressed
within this framework.

> Linear Regression: squared loss, squared regularizer.
» Support Vector Machine: hinge loss, squared regularizer.
» Lasso: squared loss, L1 regularizer.

> Inference: minimize the cost function E(3), yielding a point estimate
for 3.

» Q: How to determine ¢ and the a suitable loss function?



Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)

Total number of samples

test set ‘ training set fold 1

‘ ‘ | fold 3

L 1L 1y

fold 2
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Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)

» Randomly split data into K sets of equal size

» For each fold k:
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Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)

» Randomly split data into K sets of equal size

» For each fold k:

Total number of samples

1. Train on all data except the k™" set
2. Test evaluation on k™" set

test set ‘ training set fold 1

‘ ‘ | fold 3

NI ) E—

fold 2




Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)

» Randomly split data into K sets of equal size

» For each fold k:

Total number of samples

1. Train on all data except the k™" set
2. Test evaluation on k™" set

test set ‘ training set fold 1

1 K
test
?;E’“ (1) | | | s

> Assess average loss on test sets

LI L 1y

fold 2




Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)

» Randomly split data into K sets of equal size

» For each fold k:

Total number of samples

1. Train on all data except the k™" set
2. Test evaluation on k™" set

test set ‘ training set fold 1

vl N
) >
> Assess average loss on test sets ‘ ‘ ‘ ‘ ol
0
K
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= Ef (H
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k=1

» Pick model H with lowest average loss



Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different A, different regularizers, different basis functions, etc.)
» Randomly split data into K sets of equal size

» For each fold k:

Total number of samples

1. Train on all data except the k™" set

vl N
< >
2. Test evaluation on k™ set s | o
> Assess average loss on test sets ‘ ‘ ‘ ‘ fold2
K
1 test
= E
K Z k(H) ‘ ‘ | fold 3
k=1

» Pick model H with lowest average loss

» Re-train optimal #H on all data
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> Back to probabilities?
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Probabilistic interpretation

» So far: minimization of error functions.

> Back to probabilities?

N
A
B(p) = 23 (o — blwn) B +2678
n=1 N——
Regularizer

Squared error

N
= const. — ZlnN(yn | ¢(xn) -,3,02) flnN(,B | 0,%1)

n=1
= const. —Inp(y| B, B(X),0”) —Inp(B)
—_— —~—~

Likelihood prior

» Regularized regression equivalent to MAP estimation

> Most alternative choices of regularizers and loss functions can be mapped to an
equivalent probabilistic representation in a similar way.



Outline

Bayesian linear regression



Bayesian linear regression

» Likelihood as before

N
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Bayesian linear regression

» Likelihood as before

N
Py X.B8,0%) = [TV (4 | $(z0) - B,0%)
n=1

» Define a conjugate prior over 3

p(B) =N (B | mg,So)




Bayesian linear regression

» Posterior probability of 3

N
p(Bly, X, 0%) HN(yn | ¢(xn) - B,0°) - N (B | mo,So)
n=1

N(y| ¢(X)-B,0°I)-N(B | mg,So)
=N(B|ps Xs)

» where
_ 1

Y5 = [50—1 + ;QE(X)TJ)(X)} -



Bayesian linear regression

Prior choice
» Choice of prior: regularized (ridge) regression
p(B) = N (B|mo, So).
» In this case
p(Bly, X, 0%) o N (B | my,Sy)

1
my = Sy <5’01m0 + J245(X)Ty>
1 —1
Sy = [501 + UZSP(X)T@(X)]
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» Choice of prior: regularized (ridge) regression

p(B) = N(810,11).
» In this case
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» my is equal to the ridge regression (L) estimate for 3
(Exercise: derive both and compare!)



Bayesian linear regression

Prior choice

» Choice of prior: regularized (ridge) regression

p(B) = N(810,11).
» In this case
p(ﬁ’yﬂ'X?O_Q)OCN(IB ’ mN7SN)

my = Sy < 145(X)Ty>

02
-1
Sy = [)\I + % d(X)" QS(X)}

» my is equal to the ridge regression (L) estimate for 3
(Exercise: derive both and compare!)

» Equivalent to maximum likelihood estimate for A — 0!



Bayesian linear regression

Example: sequential Bayesian learning

likelihood prior/posterior data space
1 1

> likelihood

N
TIN (v | Bo+@npi, 0?)

n=1

> prior

1
N<ﬁ|0,XI)

» This prior is conjugate, so we
can do sequential learning



Bayesian linear regression

Example: sequential Bayesian learning

likelinood prior/posterior data space
1 1

> likelihood

N 1 0z 1
TIN (v | Bo+@npi, 0?) '
n=1 Y
> prior
N({B]O lI R
A

» This prior is conjugate, so we
can do sequential learning

v

1 data point



Bayesian linear regression

Example: sequential Bayesian learning

v

v

likelihood

N

TIN (v | Bo+@npi, 0?)
n=1

prior

N(Blo, ir
T

This prior is conjugate, so we

can do sequential learning
1 data point
2 data points

likelinood

prior/posterior

data space




Bayesian linear regression

Example: sequential Bayesian learning

likelinood prior/posterior data space
1 1

> likelihood

N
TIN (v | Bo+@npi, 0?)
n=1

> prior

1
N<E|O,XI)

» This prior is conjugate, so we
can do sequential learning

1 data point
» 2 data points

> 20 data points
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> Prediction for fixed weight estimate ,@ at input &* trivial:
5 2 5 2
Py’ |2t B,0%) =N (v* | $(@)B,0” )
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Making predictions
> Prediction for fixed weight estimate ,@ at input &* trivial:
Py 12, B,0%) =N (v | ¢(@")B,0")
> Integrate over 3 to take the posterior uncertainty into account
b0’ 12 D) x [ 0" [ 8,0%)p(B] X,y o) 4B
B

cx/ﬁN(y* | p(x")8,02) N (B | m, Sw)



Making predictions
> Prediction for fixed weight estimate ,@ at input &* trivial:
Py’ |2t B,0%) =N (v* | $(@)B,0” )
> Integrate over 3 to take the posterior uncertainty into account
b, D) o [ 71,8, (8] X, 3. 0%) 48
[ N (' 168.0°) N (8 ma, Si)

x /¢( *)ﬁN(¢(m*)ﬂ | y*702)/\/(¢(m*),8 \ ¢(m*)mN,¢(w*)sN¢(m*)T)



Making predictions

> Prediction for fixed weight estimate 3 at input &* trivial:
Py’ |2t B,0%) =N (v* | $(@)B,0” )
> Integrate over 3 to take the posterior uncertainty into account
Py | 2", D) o /ﬁ p(y* 12", 8,0)p(B] X, y,0%) dB
oc/ﬁN(y* | 6(@")8,0*) N (B | mu, Sx)
[ N(o)8 1) N (618 | dfama. ola)Sxota))
<N (4 | (@) - mu,0” + pla") Sne(a") )

> Key:

» prediction is again Gaussian



Making predictions

> Prediction for fixed weight estimate 3 at input &* trivial:
Py 12, B,0%) =N (v | ¢(@")B,0")
> Integrate over 3 to take the posterior uncertainty into account
b, D) o [ 71,8, (8] X, 3. 0%) 48
x [N 88,0 ) N (B | ma,Sx)
[ N(o)8 1) N (618 | dfama. ola)Sxota))
<N (v | e@) -my.o + o)) Snela) )

> Key:

» prediction is again Gaussian
» Predictive variance is increased due to the posterior uncertainty in 3.
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Predictive distribution

Marginal variance for z* Predictive covariance

iL‘TSN z’
o+ o™ Snd(e) b(x)" Swo(a)

Visualize by sampling from the

Predictive distribution posterior of 3

1
1
t
t

Experiment:

» 9 Gaussian basis functions



Predictive distribution

Marginal variance for z* Predictive covariance

iL‘TSN z’
o+ o™ Snd(e) b(x)" Swo(a)

Visualize by sampling from the

Predictive distribution posterior of 3

-1

Experiment:

» 9 Gaussian basis functions



Predictive distribution

Marginal variance for z*

o’ + ¢(z”) Sno(z")

Predictive distribution

o O

Experiment:

» 9 Gaussian basis functions

Predictive covariance

o) Sno(x)

Visualize by sampling from the

Empirical Observations:



Predictive distribution

Marginal variance for z*

o’ + ¢(z”) Sno(z")

Predictive distribution
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Experiment:

» 9 Gaussian basis functions

Predictive covariance

o) Sno(x)

Visualize by sampling from the

Empirical Observations:

» Variance approaches noise variance
for large sample size



Predictive distribution

Marginal variance for z*
o’ + ¢(@") Sno(z")

Predictive distribution

o O

Experiment:

» 9 Gaussian basis functions

Predictive covariance

o) Sno(x)

Visualize by sampling from the

Empirical Observations:

» Variance approaches noise variance
for large sample size

» Co-variance between close @ values is
high



Outline

Model comparison and hypothesis testing
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> What degree of polynomials
describes the data best?

> Is the linear model at all
appropriate?



Model comparison

Motivation

» What degree of polynomials
describes the data best?

> Is the linear model at all
appropriate?

» Association testing.

Genome

individuals

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs.

/

-~

Phenome

phenotypes




Bayesian model comparison

» How do we choose among alternative models?

» Assume we want to choose among models Hy, ..., Hys for a
dataset D.



Bayesian model comparison

» How do we choose among alternative models?

» Assume we want to choose among models Hy, ..., Hys for a
dataset D.

» Posterior probability for a particular model 7

p(Hi| D) o< p(D|Hi) p(Hi)

Evidence  Prior



Bayesian model comparison

How to calculate the evidence

» The evidence is not the model likelihood!

p(D | H;) :/ p(D| ©)p(O©)dO for model parameters O.
e



Bayesian model comparison

How to calculate the evidence

» The evidence is not the model likelihood!

p(D | H;) —/ p(D| ©)p(O©)dO for model parameters O.
e

» Remember:
p(D|Hi, O)p(O)

p(D|Hi)
likelihood - prior

p(@ | Hi, D) =

osterior = -
P Evidence



Bayesian model comparison

Bayesian Occam’s razor

» The evidence integral penalizes overly complex
models.

Likelihood

(C.M. Bishop, Pattern Recognition and Machine

Learning)
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model with a peaked likelihood that requires H2
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Bayesian model comparison

Bayesian Occam’s razor

» The evidence integral penalizes overly complex
models.

» A model with few parameters and lower
maximum likelihood (1) may win over a Evidence
model with a peaked likelihood that requires p(D) "
many more parameters (H2). *
» When averaging the likelihood over all possible a
parameters, more complex models have low fit i
for most of the setting, resulting in a lower \i \

evidence D
Do

Hj

» Complex models have low average over many
possible data sets

(C.M. Bishop, Pattern Recognition and Machine
Learning)
> Simple models have large evidence on a small
range of data sets, extremely low evidence
otherwise



Application to GWAS

Relevance of a single SNP
» Consider an association study.
» Ho : no association
p(y|Ho, X, O0) =N (y | 0,0°I)
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Application to GWAS

Relevance of a single SNP

» Consider an association study.
» Hq : no association

p(y|Ho, X, O0) =N (y | 0,0°I)
p(D|H0)=/ N (y0.0°I) p(o?)

o2

» Hq: linear association
p(y‘Hlamia @1) :N(y | Z; 'ﬂaO—QI)
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Application to GWAS

Relevance of a single SNP

» Consider an association study.
» Hq : no association

p(y|Ho, X, O0) =N (y | 0,0°I)
p(D|Ho) Z/ N(y | 0,0°I) p(o?)

o2

» Hq: linear association
p(y‘Hlamia @1) :N(y | Z; 'ﬂvO—QI)
w01 = [N (yl 25,0 o)

» Depending on the choice of priors, p(¢?) and p(f), the required
integrals are often tractable in closed form. (Conjugate priors!)



Application to GWAS

Scoring models

» Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models:
p(D|H1)

BF =In——=-.
p(D|Ho)



Application to GWAS

Scoring models

» Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models:

p(D|H1)
BF =In——-=.
p(D[Ho)
» SLC35B4

0.01% FPR —0.01%

0 a5e 13356 10358 1336 1336213364 10366 133681.337 13372 13374
Positioninchr. 7 x10°



Application to GWAS

Posterior probability of an association

» Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.
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Posterior probability of an association

» Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.

» Posterior probability of

p(D | H1)p(Hi)
p(D)
B p(D | H1)p(H1)
~ p(D|H1)p(H1) + p(D| Ho)p(Ho)

p(H1|D) =




Application to GWAS

Posterior probability of an association

» Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.
» Posterior probability of

p(D | H1)p(Hi)
p(D)
B p(D | H1)p(H1)
~ p(D[H1)p(H1) + p(D | Ho)p(Ho)

p(H1|D) =

» p(H1| D)+ p(Ho| D) = 1, prior probability of observing a real
association.



Bayes factor versus likelihood ratio

Bayes factor

» Models of different
complexity can be
objectively compared.

» Statistical significance as
posterior probability of a
model.

Likelihood ratio

> Likelihood ratio scales with
the number of parameters.

» Likelihood ratios have
known null distribution,
yielding p-values.



Bayes factor versus likelihood ratio

Bayes factor

» Models of different
complexity can be
objectively compared.

» Statistical significance as
posterior probability of a
model.

» Typically hard to compute.

Likelihood ratio

> Likelihood ratio scales with
the number of parameters.

» Likelihood ratios have
known null distribution,
yielding p-values.

» Often easy to compute.



Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X

S
P(y| X,8.0%) = N (y | 2%55,021)

s=1



Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X

S
p(y| X, 8,07 =N<y | Zwsﬁs,021>

s=1
» Choose identical Gaussian prior for all weights

S
p(ﬁ) = HN(BS ‘ 0705)



Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X

S
p(y|X7B>G2) :N<y ‘ stﬁs,O'ZI)

s=1
» Choose identical Gaussian prior for all weights

S
p(B) = HN(ﬁs | 0,0’;)

s=1

» Marginal likelihood

p<y|X,a2,a§>=/BN(y | XB.0°T)N (8 0.02I)

— N (y]0,02XX" +0°T)



Marginal likelihood of variance component models

» Consider a linear model, accounting for a set of measured SNPs X

S
p(y|X7B>G2) :N<y ‘ stﬂs,O’ZI)

s=1
» Choose identical Gaussian prior for all weights

S
p(B) = HN(ﬁs | 0,0’;)

s=1

Marginal likelihood

v

p<y|X,o%a§>=/BN(y | XB.0°T)N (8 0.02I)

~ N (y]0,02XXT +0T)

v

Number of hyperparameters independent of number of SNPs



Marginal likelihood of variance component models

Basis functions

» The analogous derivation can be repeated for a feature mapping ¢
s
p(y‘X,ﬁ,UQ) =N (y ‘ Z¢(ws)687021> =
s=1
N(y| &(X)B,0°I)



Marginal likelihood of variance component models

Basis functions

» The analogous derivation can be repeated for a feature mapping ¢
s
p(y‘X,ﬁ,UQ) =N (y ‘ Z¢(ms)687021> =
s=1

N(y| #(X)8,0°1)
» Marginal likelihood

p<y|x,a2,a§>—/ﬁN(y| 5(X)B.0°T) N (80,02

=N (y 10,02 8(X)®(X)" +0—21)

K



Marginal likelihood of variance component models

Basis functions

» The analogous derivation can be repeated for a feature mapping ¢
s
p(y‘X,ﬁ,UQ) =N (y ‘ Z¢(ms)687021> =
s=1
N(y| &(X)B,0°I)

» Marginal likelihood

p<y|x,a2,a§>—/BN(y| 5(X)B.0°T) N (80,02

=N |y]|0,0] 3(X)P(X)" +o°I
N ——
K

» K: (N x N) kernel or covariance induced by feature mapping ¢.



Marginal likelihood of variance component models
Application to GWAS

The missing heritability paradox
» Complex traits are regulated by a large number of small effects

» Human height: the best single SNP explains little variance.
» But: height of the parents are highly predictive for the height of the
child!



Marginal likelihood of variance component models
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Linear additive models for complex traits

» Multiple linear regression model over causal SNPs

ply|X,B8,0°) =N(y| Y xps,0°I)

s€causal
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Application to GWAS
Linear additive models for complex traits

» Multiple linear regression model over causal SNPs
ply|X,B8,0°) =N(y| Y xps,0°I)
s€causal

» Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

S
p(le)ﬁ’U2) :N(y‘ Zw5587 021)
s=1



Marginal likelihood of variance component models

Application to GWAS
Linear additive models for complex traits

» Multiple linear regression model over causal SNPs

ply|X,B8,0°) =N(y| Y xps,0°I)

s€causal

» Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

S
p(le)ﬁ’U2) :N(y‘ Zm5587 021)
s=1

» Causal SNPs either in the model or “tagged” by linkage disequilibrium to nearby
common SNPs



Marginal likelihood of variance component models

Application to GWAS
Linear additive models for complex traits

» Multiple linear regression model over causal SNPs

p(y| X,B8,0°)=N(y| Y xBs, 01

s€causal

» Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

S
py|X,B8,6°) =N(y| > a8, o°I)

» Causal SNPs either in the model or “tagged” by linkage disequilibrium to nearby
common SNPs

> Uncertainty over causal SNPs: Prior on all SNP effects p(Bs) = N (s | 0,07 /S )
> Marginalize out weights

S
p(y| X, o5,0%) =N(y 0, o ZE @l +0°I)



Marginal likelihood of variance component models

Application to GWAS
Linear additive models for complex traits

» Multiple linear regression model over causal SNPs

p(y| X,B8,0°)=N(y| Y xBs, 01

s€causal

» Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

s
Y| X,B8,6°) =N(y| Y xbs, 0"I)
» Causal SNPs either in the model or “tagged” by linkage disequilibrium to nearby
common SNPs

> Uncertainty over causal SNPs: Prior on all SNP effects p(Bs) = N (s | 0,07 /S )

> Marginalize out weights

S
p(y| X, o5,0%) =N(y 0, o ZE @l +0°I)

. . Lo L 2 2
> Perform maximum marginal likelihood estimation on o and o~.



Marginal likelihood of variance component models
Application to GWAS

> Approximate variance model

p(y| X, 07,0%) = /\/(yIO,UggXXT o*I)



Marginal likelihood of variance component models
Application to GWAS

> Approximate variance model

1 a . » b ooes
3 (-]
X,02,0%) =N(y|0,02 - XX +0%I) =
p(y| 'Y g ) y| ’ gS + E"W ° 0:9/0 ;§§o.o15 o, @aﬂ ,
= on I B
00t @ 3 8000 @@% LY
. . 2
> GenetIC variance O'g acCross 0 50 100 150 200 250 0 S 100 150 200 250
chromosomes C o o d oo
5012 . ° °
Eoto H s
iéuo& §§ . ®
fon o fjomlg e >""
o) o Gg . —0 F S @
U e B0 "o w o 10 a0 20
Chromosome length (Mb) Chromosome length (Mb)

[Yang et al. 2011]



Marginal likelihood of variance component models
Application to GWAS

> Approximate variance model

1 a o b oos
2 2\ _ 2~ T 2 f 25000 °
p(y|X,Ug,o)—./\/(y|O,ogSXX + oI A IPE) | ol R
S0 %ﬂ §Soon0 ®eo T
I fi| £T0 8
. . o0
> GenetIC variance O’; acCross 0 50 100 150 200 250 0 50 100 150 200 250
chromosomes C o o d on .
o
o fon HES %
> (Narrow-sense) heritability 15 £ o 0
0_2 §oos ° gg oot g © /%
2 __ g 2| o G0 % : ®
_ e
o2 + o2 TEEERE CLERRS

[Yang et al. 2011]



Marginal likelihood of variance
Application to GWAS

> Approximate variance model

1
ply| X,00,0°) =N(y|0,00 XX +

&S

» Genetic variance aé across
chromosomes

> (Narrow-sense) heritability
o2
2 _ g
Jg + o2
» Narrow-sense refers to linear
additive part of the heritability

component models
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[Yang et al. 2011]
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Summary

» Linear models for curve fitting and multiple linear regression.
» Maximum likelihood and least squares regression are identical.
» Construction of features using a mapping ¢.

» Regularized least squares and other models that correspond to
different choices of loss functions.

» Bayesian linear regression.
» Model comparison and Occam’s razor.

» Variance component models in GWAS.



Outlook

» Estimation technique for aé and o2.
» Use marginal linear model for confounder correction in GWAS testing
of single SNPs
> Linear mixed models for GWAS testing

> Use marginal linear model for testing for significant associations of
sets of variants.
> Idea : Testfor’;'-lo:JE:Ovs. H1:O'§>O
» Random effects testing



Tasks

» Derive ridge regularized Bas4p in linear regression
» Derive posterior distribution (mean and covariance) of 3 in a linear
regression under a Normal prior

» Compare them!
» Derive marginal likelihood for linear regression under a Normal prior

on B

> hint: The following expression is a Gaussian convolution:

/N(aw,za)-N(bmb, 2,) db

:/N<a—b|o, 5a)-N(b| pp, 5) db
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