Machine Learning and Statistics in Genetics and Genomics

IV: Regularized and Bayesian regression

Christoph Lippert

Microsoft Research
eScience group

Research
Los Angeles, USA

Current topics in computational biology UCLA
Winter quarter 2014

Linear Regression II

Bayesian linear regression

Model comparison and hypothesis testing

Summary

Outline

Outline

Linear Regression II

Bayesian linear regression

Model comparison and hypothesis testing

Summary

Regression

Linear regression:

- Making predictions
- Comparison of alternative models
Bayesian and regularized regression:

Regression

Linear regression:

- Making predictions
- Comparison of alternative models
Bayesian and regularized regression:
- Uncertainty in model parameters

Regression

Linear regression:

- Making predictions
- Comparison of alternative models
Bayesian and regularized regression:
- Uncertainty in model parameters
- Generalized basis functions

Further reading, useful material

- Christopher M. Bishop: Pattern Recognition and Machine learning
- Sam Roweis: Gaussian identities

Outline

Regression

Noise model and likelihood

- Given a dataset $\mathcal{D}=\left\{\boldsymbol{x}_{n}, y_{n}\right\}_{n=1}^{N}$, where $\boldsymbol{x}_{n}=\left\{x_{n, 1}, \ldots, x_{n, D}\right\}$ is D dimensional (for example D SNPs), fit parameters $\boldsymbol{\theta}$ of a regressor f with added Gaussian noise:

$$
y_{n}=f\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)+\epsilon_{n} \quad \text { where } \quad p\left(\epsilon \mid \sigma^{2}\right)=\mathcal{N}\left(\epsilon \mid 0, \sigma^{2}\right) .
$$

- Equivalent likelihood formulation:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid f\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right), \sigma^{2}\right)
$$

Regression

Choosing a regressor

- Choose f to be linear:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise include an additional column of ones in each \boldsymbol{x}_{n}.

Regression

Choosing a regressor

- Choose f to be linear:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise include an additional column of ones in each \boldsymbol{x}_{n}.

Equivalent graphical model

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is
- Least squares and maximum likelihood are equivalent.

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{X}, \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

Linear Regression and Least Squares

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t to $\boldsymbol{\beta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\beta}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N} \boldsymbol{x}_{n}^{\top}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)=\mathbf{0} \\
& \Longrightarrow \boldsymbol{\beta}_{\mathrm{ML}}=\underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}}_{\text {Pseudo inverse }} \boldsymbol{y}
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\begin{aligned}
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t to $\boldsymbol{\beta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\beta}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N} \boldsymbol{x}_{n}^{\top}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)=\mathbf{0} \\
& \Longrightarrow \boldsymbol{\beta}_{\mathrm{ML}}=\underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}}_{\text {Pseudo inverse }} \boldsymbol{y}
\end{aligned}
$$

- Here, the matrix \boldsymbol{X} is defined as $\boldsymbol{X}=\left[\begin{array}{ccc}x_{1,1} & \ldots & x 1, D \\ \ldots & \ldots & \ldots \\ x_{N, 1} & \ldots & x_{N, D}\end{array}\right]$

Polynomial Curve Fitting

Motivation

- Non-linear relationships.
- Multiple SNPs playing a role for a particular phenotype.

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x)=\boldsymbol{\phi}(x) \boldsymbol{\beta}
\end{aligned}
$$

where we defined $\phi(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x)=\boldsymbol{\phi}(x) \boldsymbol{\beta}
\end{aligned}
$$

where we defined $\boldsymbol{\phi}(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.
ϕ can be any feature mapping:

- Radial basis functions (also: 'Gaussian' basis functions)

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x)=\boldsymbol{\phi}(x) \boldsymbol{\beta}
\end{aligned}
$$

where we defined $\boldsymbol{\phi}(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.
ϕ can be any feature mapping:

- $\phi_{j}(x)=e^{x}, \phi_{j}(x)=\log (x), \ldots$
- Radial basis functions (also: 'Gaussian' basis functions)

where $\sigma(a)=\frac{1}{1+\exp (-a)}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x)=\boldsymbol{\phi}(x) \boldsymbol{\beta}
\end{aligned}
$$

where we defined $\boldsymbol{\phi}(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.
ϕ can be any feature mapping:

- $\phi_{j}(x)=e^{x}, \phi_{j}(x)=\log (x), \ldots$
- Radial basis functions (also: 'Gaussian' basis functions)

$$
\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)
$$

where $\sigma(a)=\frac{1}{1+\exp (-a)}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Univariate input x

- Use the polynomials up to degree K to construct new features from x

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x)=\boldsymbol{\phi}(x) \boldsymbol{\beta}
\end{aligned}
$$

where we defined $\phi(x)=\left(1, x, x^{2}, \ldots, x^{K}\right)$.
ϕ can be any feature mapping:

- $\phi_{j}(x)=e^{x}, \phi_{j}(x)=\log (x), \ldots$
- Radial basis functions (also: 'Gaussian' basis functions)

$$
\phi_{j}(x)=\exp \left(-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right)
$$

- Sigmoidal basis functions

$$
\phi_{j}(x)=\sigma\left(\frac{x-\mu_{j}}{s}\right), \quad \text { where } \sigma(a)=\frac{1}{1+\exp (-a)}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The order of the polynomial M is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The order of the polynomial M is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The order of the polynomial M is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The order of the polynomial M is crucial to avoid under- and overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The order of the polynomial M is crucial to avoid under- and overfitting.
- Observation: Variance in regression coefficients $\boldsymbol{\beta}=\left[w_{0}^{\star}, \ldots, w_{9 \star}\right]$ grows dramatically with M

	$M=0$	$M=1$	$M=6$	$M=9$
w_{0}^{\star}	0.19	0.82	0.31	0.35
w_{1}^{\star}		-1.27	7.99	232.37
w_{2}^{\star}			-25.43	-5321.83
w_{3}^{\star}			17.37	48568.31
w_{4}^{\star}				-231639.30
w_{5}^{\star}				640042.26
w_{6}^{\star}				-1061800.52
w_{7}^{\star}				1042400.18
w_{8}^{\star}				-557682.99
w_{9}^{\star}				125201.43

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

- Root-mean squared error

$$
\begin{aligned}
E_{\mathrm{RMS}} & =\sqrt{2 E(\boldsymbol{\beta}) / N} \\
& =\sqrt{\left(\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right) / N}
\end{aligned}
$$

- Can be measured on training data
- Or when predicting naw data (tact data)

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

- Root-mean squared error

$$
\begin{aligned}
E_{\mathrm{RMS}} & =\sqrt{2 E(\boldsymbol{\beta}) / N} \\
& =\sqrt{\left(\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right) / N}
\end{aligned}
$$

- Can be measured on training data
- Or when predicting new data (test data)
- Underfitting: large E_{RMS} on train and test
data

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

- Root-mean squared error

$$
\begin{aligned}
E_{\mathrm{RMS}} & =\sqrt{2 E(\boldsymbol{\beta}) / N} \\
& =\sqrt{\left(\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right) / N}
\end{aligned}
$$

- Can be measured on training data
- Or when predicting new data (test data)

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

- Root-mean squared error

$$
\begin{aligned}
E_{\mathrm{RMS}} & =\sqrt{2 E(\boldsymbol{\beta}) / N} \\
& =\sqrt{\left(\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right) / N}
\end{aligned}
$$

- Can be measured on training data
- Or when predicting new data (test data)
- Underfitting: large $E_{\text {RMS }}$ on train and test data

(C.M. Bishop, Pattern Recognition and Machine

Polynomial Curve Fitting

Generalization performance

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

- Root-mean squared error

$$
\begin{aligned}
E_{\mathrm{RMS}} & =\sqrt{2 E(\boldsymbol{\beta}) / N} \\
& =\sqrt{\left(\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right) / N}
\end{aligned}
$$

- Can be measured on training data

(C.M. Bishop, Pattern Recognition and Machine
- Underfitting: large $E_{\text {RMS }}$ on train and test data
- Overfitting: small $E_{\text {RMS }}$ on train and large $E_{\text {RMS }}$ on test data.

Polynomial Curve Fitting

Overfitting

- The number N of training data is crucial to accurately estimate many parameters without overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The number N of training data is crucial to accurately estimate many parameters without overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial Curve Fitting

Overfitting

- The number N of training data is crucial to accurately estimate many parameters without overfitting.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Multivariate regression

Polynomial curve fitting

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x) \\
& =\phi(x) \cdot \boldsymbol{\beta}
\end{aligned}
$$

High dimensional regression

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\sum_{d=1}^{D} \beta_{d} x_{d} \\
& =\boldsymbol{x} \cdot \boldsymbol{\beta}
\end{aligned}
$$

Multivariate regression

Polynomial curve fitting

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\beta_{0}+\beta_{1} x+\cdots+\beta_{K} x^{K} \\
& =\sum_{k=1}^{K} \beta_{k} \phi_{k}(x) \\
& =\phi(x) \cdot \boldsymbol{\beta},
\end{aligned}
$$

High dimensional regression

$$
\begin{aligned}
f(x, \boldsymbol{\beta}) & =\sum_{d=1}^{D} \beta_{d} x_{d} \\
& =\boldsymbol{x} \cdot \boldsymbol{\beta}
\end{aligned}
$$

- Note: When fitting a single binary variable \boldsymbol{x}_{i}, a linear model is most general!

Regularized Least Squares

Ridge regression

- Solutions to avoid overfitting:

1. Intelligently choose number of parameters

Regularized Least Squares

Ridge regression

- Solutions to avoid overfitting:

1. Intelligently choose number of parameters
2. Get more data

Regularized Least Squares

Ridge regression

- Solutions to avoid overfitting:

1. Intelligently choose number of parameters
2. Get more data
3. Regularize the regression weights $\boldsymbol{\beta}$

- Quadratically regularized objective function

Regularized Least Squares

Ridge regression

- Solutions to avoid overfitting:

1. Intelligently choose number of parameters
2. Get more data
3. Regularize the regression weights $\boldsymbol{\beta}$

- Quadratically regularized objective function

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{\text {Regularizer }}
$$

Polynomial curve fitting

L_{2} regularization

- $M=9$, different λ values

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial curve fitting

L_{2} regularization

- $M=9$, different λ values

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial curve fitting

L_{2} regularization

- $M=9$, different λ values

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial curve fitting

L_{2} regularization

- $M=9$, different λ values

	$\ln \lambda=-\infty$	$\ln \lambda=-18$	$\ln \lambda=0$
w_{0}^{\star}	0.35	0.35	0.13
w_{1}^{\star}	232.37	4.74	-0.05
w_{2}^{\star}	-5321.83	-0.77	-0.06
w_{3}^{\star}	48568.31	-31.97	-0.05
w_{4}^{\star}	-231639.30	-3.89	-0.03
w_{5}^{\star}	640042.26	55.28	-0.02
w_{6}^{\star}	-1061800.52	41.32	-0.01
w_{7}^{\star}	1042400.18	-45.95	-0.00
w_{8}^{\star}	-557682.99	-91.53	0.00
w_{9}^{\star}	125201.43	72.68	0.01

(C.M. Bishop, Pattern Recognition and Machine Learning)

Polynomial curve fitting

L_{2} regularization

- $M=9$, different λ values

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Experiment:

- 100 rand m data sets $(N=25)$
- learn 25 RBF basis functions
(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

Estimated functions

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]$

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
(C.M. Bishop, Pattern Recognition and Machine Learning)

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

Estimated functions

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Empirical Observations:

- Bias decreases with smaller λ

Bias-variance tradeoff

Variance of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {est }}-\mathbb{E}\left[f^{\text {est }}\right]^{2}\right]
$$

Estimated functions

Experiment:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ

Bias of $f^{\text {est }}$

$$
\mathbb{E}_{\mathcal{D}}\left[f^{\text {true }}-f^{\text {est }}\right]
$$

Empirical Observations:

- Bias decreases with smaller λ
- Variance increases with smaller λ

Bias-variance tradeoff

Effect on mean squared error

$$
\begin{aligned}
& \qquad y_{n}=f^{\text {true }}\left(x_{n}\right)+\epsilon_{n} \\
& \text { mean squared error }\left(f^{\text {est }}\right)=\mathbb{E}_{\mathcal{D}}\left[\left(y-f^{\text {est }}(x)\right)^{2}\right] \\
& \\
& =(\text { bias })^{2}+\text { variance }+ \text { noise }
\end{aligned}
$$

Bias-variance tradeoff

Effect on mean squared error

$$
\begin{aligned}
& \qquad y_{n}=f^{\text {true }}\left(x_{n}\right)+\epsilon_{n} \\
& \text { mean squared error }\left(f^{\text {est }}\right) \\
& =\mathbb{E}_{\mathcal{D}}\left[\left(y-f^{\text {est }}(x)\right)^{2}\right] \\
& \\
& =(\text { bias })^{2}+\text { variance }+ \text { noise }
\end{aligned}
$$

Experiment as before:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
- Compute sample estimates of bias and
variance
* Additionally 1000 test data points to
estimate mean-squared error

Bias-variance tradeoff

Effect on mean squared error

$$
\begin{aligned}
& \qquad y_{n}=f^{\text {true }}\left(x_{n}\right)+\epsilon_{n} \\
& \text { mean squared error }\left(f^{\text {est }}\right) \\
& =\mathbb{E}_{\mathcal{D}}\left[\left(y-f^{\text {est }}(x)\right)^{2}\right] \\
& \\
& =(\text { bias })^{2}+\text { variance }+ \text { noise }
\end{aligned}
$$

Experiment as before:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
- Compute sample estimates of bias and variance

Additionally 1000 test data points to estimate mean-squared error

Bias-variance tradeoff

Effect on mean squared error

$$
\begin{aligned}
& \qquad y_{n}=f^{\text {true }}\left(x_{n}\right)+\epsilon_{n} \\
& \text { mean squared error }\left(f^{\text {est }}\right) \\
& =\mathbb{E}_{\mathcal{D}}\left[\left(y-f^{\text {est }}(x)\right)^{2}\right] \\
& \\
& =(\text { bias })^{2}+\text { variance }+ \text { noise }
\end{aligned}
$$

Experiment as before:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
- Compute sample estimates of bias and variance
- Additionally 1000 test data points to estimate mean-squared error

Bias-variance tradeoff

Effect on mean squared error

$$
\begin{aligned}
& \qquad y_{n}=f^{\text {true }}\left(x_{n}\right)+\epsilon_{n} \\
& \text { mean squared error }\left(f^{\text {est }}\right) \\
& =\mathbb{E}_{\mathcal{D}}\left[\left(y-f^{\text {est }}(x)\right)^{2}\right] \\
& \\
& =(\text { bias })^{2}+\text { variance }+ \text { noise }
\end{aligned}
$$

Experiment as before:

- 100 random data sets $(N=25)$
- learn 25 RBF basis functions
- vary λ
- Compute sample estimates of bias and variance
- Additionally 1000 test data points to estimate mean-squared error

(C.M. Bishop, Pattern Recognition and Machine Learning)

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

${ }^{-} q \leq 1$: non-differentiable
$\rightarrow q<1$: non-convex (could have local optima)

(C.M. Bishop, Pattern Recognition and Machine Learning)

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- $q \leq 1$: non-differentiable

(C.M. Bishop, Pattern Recognition and Machine Learning)

Regularized Least Squares

More general regularizers

- More general regularization:

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- $q \leq 1$: non-differentiable
- $q<1$: non-convex (could have local optima)

(C.M. Bishop, Pattern Recognition and Machine Learning)

Smaller q yields sparser solution $\boldsymbol{\beta}^{\star}$

- $q=2$: Ridge regression $\left(L_{2}\right)$
- Squared error
- Regularizer

(C.M. Bishop, Pattern Recognition and Machine Learning)

Smaller q yields sparser solution $\boldsymbol{\beta}^{\star}$

- $q=2$: Ridge regression $\left(L_{2}\right)$
- $q=1$: Lasso $\left(L_{1}\right)$
- Squared error
- Regularizer

(C.M. Bishop, Pattern Recognition and Machine Learning)

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.
- Inference: minimize the cost function $E(\boldsymbol{\beta})$, yielding a point estimate for $\boldsymbol{\beta}$.

Loss functions and related methods

- Even more general: general loss function

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N} \mathcal{L}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)}_{\text {Loss }}+\underbrace{\frac{\lambda}{2} \sum_{d=1}^{D}\left|\beta_{d}\right|^{q}}_{\text {Regularizer }}
$$

- Many state-of-the-art machine learning methods can be expressed within this framework.
- Linear Regression: squared loss, squared regularizer.
- Support Vector Machine: hinge loss, squared regularizer.
- Lasso: squared loss, L1 regularizer.
- Inference: minimize the cost function $E(\boldsymbol{\beta})$, yielding a point estimate for β.
- Q: How to determine q and the a suitable loss function?

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

1. Train on all data except the $k^{\text {th }}$ set

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

1. Train on all data except the $k^{\text {th }}$ set
2. Test evaluation on $k^{\text {th }}$ set

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

1. Train on all data except the $k^{\text {th }}$ set
2. Test evaluation on $k^{\text {th }}$ set

- Assess average loss on test sets
$\frac{1}{K} \sum_{k=1}^{K} E_{k}^{\mathrm{test}}(\mathcal{H})$

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

1. Train on all data except the $k^{\text {th }}$ set
2. Test evaluation on $k^{\text {th }}$ set

- Assess average loss on test sets
$\frac{1}{K} \sum_{k=1}^{K} E_{k}^{\mathrm{test}}(\mathcal{H})$

- Pick model \mathcal{H} with lowest average loss

Loss functions and related methods

Cross validation: minimization of expected loss

Compare candidate models \mathcal{H} on generalization performance (different λ, different regularizers, different basis functions, etc.)

- Randomly split data into K sets of equal size
- For each fold k :

1. Train on all data except the $k^{\text {th }}$ set
2. Test evaluation on $k^{\text {th }}$ set

- Assess average loss on test sets
$\frac{1}{K} \sum_{k=1}^{K} E_{k}^{\mathrm{test}}(\mathcal{H})$

- Pick model \mathcal{H} with lowest average loss
- Re-train optimal \mathcal{H} on all data

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
E(\boldsymbol{\beta})=\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }}+\underbrace{\frac{\lambda}{2} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{\text {Regularizer }}
$$

- Regularized regression equivalent to MAP estimation

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{aligned}
E(\boldsymbol{\beta}) & =\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }} \\
& +\underbrace{\frac{\lambda}{2} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{\text {Regularizer }} \\
& =\text { const. }-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right)
\end{aligned} \quad-\ln \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- Regularized regression equivalent to MAP estimation

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{array}{rlr}
E(\boldsymbol{\beta}) & =\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }} & +\underbrace{\frac{\lambda}{2} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{\text {Regularizer }} \\
& =\text { const. }-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right) & -\ln \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right) \\
& =\text { const. }-\ln \underbrace{\ln \left(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{\Phi}(\boldsymbol{X}), \sigma^{2}\right)}_{\text {Likelihood }} & -\ln \underbrace{p(\boldsymbol{\beta})}_{\text {prior }}
\end{array}
$$

- Regularized regression equivalent to MAP estimation equivalent probabilistic representation in a similar way.

Probabilistic interpretation

- So far: minimization of error functions.
- Back to probabilities?

$$
\begin{array}{rlr}
E(\boldsymbol{\beta}) & =\underbrace{\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Squared error }} & +\underbrace{\frac{\lambda}{2} \boldsymbol{\beta}^{\top} \boldsymbol{\beta}}_{\text {Regularizer }} \\
& =\text { const. }-\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right) & -\ln \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right) \\
& =\text { const. }-\ln \underbrace{\ln \left(\boldsymbol{y} \mid \boldsymbol{\beta}, \boldsymbol{\Phi}(\boldsymbol{X}), \sigma^{2}\right)}_{\text {Likelihood }} & -\ln \underbrace{p(\boldsymbol{\beta})}_{\text {prior }}
\end{array}
$$

- Regularized regression equivalent to MAP estimation
- Most alternative choices of regularizers and loss functions can be mapped to an equivalent probabilistic representation in a similar way.

Outline

Linear Regression II

Bayesian linear regression

Model comparison and hypothesis testing

Summary

Bayesian linear regression

- Likelihood as before

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

Bayesian linear regression

- Likelihood as before

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Define a conjugate prior over $\boldsymbol{\beta}$

$$
p(\boldsymbol{\beta})=\mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{0}, \boldsymbol{S}_{0}\right)
$$

Bayesian linear regression

- Posterior probability of $\boldsymbol{\beta}$

$$
\begin{aligned}
p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X}, \sigma^{2}\right) & \propto \prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \cdot \boldsymbol{\beta}, \sigma^{2}\right) \cdot \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{0}, \boldsymbol{S}_{0}\right) \\
& =\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \cdot \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \cdot \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{0}, \boldsymbol{S}_{0}\right) \\
& =\mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\boldsymbol{\beta}}, \boldsymbol{\Sigma}_{\boldsymbol{\beta}}\right)
\end{aligned}
$$

- where

$$
\begin{aligned}
\boldsymbol{\mu}_{\boldsymbol{\beta}} & =\boldsymbol{\Sigma}_{\boldsymbol{\beta}}\left(\boldsymbol{S}_{0}^{-1} \boldsymbol{m}_{0}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{y}\right) \\
\boldsymbol{\Sigma}_{\boldsymbol{\beta}} & =\left[\boldsymbol{S}_{0}^{-1}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{\Phi}(\boldsymbol{X})\right]^{-1}
\end{aligned}
$$

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\beta})=\mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{0}, \boldsymbol{S}_{0}\right) .
$$

- In this case

$$
\begin{aligned}
p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X}, \sigma^{2}\right) & \propto \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
\boldsymbol{m}_{N} & =\boldsymbol{S}_{N}\left(\boldsymbol{S}_{0}^{-1} \boldsymbol{m}_{0}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{y}\right) \\
\boldsymbol{S}_{N} & =\left[\boldsymbol{S}_{0}^{-1}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{\Phi}(\boldsymbol{X})\right]^{-1}
\end{aligned}
$$

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\beta})=\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- In this case

$$
\begin{aligned}
& p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X}, \sigma^{2}\right) \propto \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \boldsymbol{m}_{N}=\boldsymbol{S}_{N}\left(\begin{array}{l}
\left.\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{y}\right) \\
\boldsymbol{S}_{N}
\end{array}\right. \\
&=\left[\lambda \boldsymbol{I}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{\Phi}(\boldsymbol{X})\right]^{-1}
\end{aligned}
$$

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\beta})=\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- In this case

$$
\begin{aligned}
& p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X}, \sigma^{2}\right) \propto \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \boldsymbol{m}_{N}=\boldsymbol{S}_{N}\left(\begin{array}{l}
\left.\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{y}\right) \\
\boldsymbol{S}_{N}
\end{array}\right. \\
&=\left[\lambda \boldsymbol{I}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{\Phi}(\boldsymbol{X})\right]^{-1}
\end{aligned}
$$

- \boldsymbol{m}_{N} is equal to the ridge regression $\left(L_{2}\right)$ estimate for $\boldsymbol{\beta}$
(Exercise: derive both and compare!)

Bayesian linear regression

Prior choice

- Choice of prior: regularized (ridge) regression

$$
p(\boldsymbol{\beta})=\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- In this case

$$
\begin{aligned}
& p\left(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{X}, \sigma^{2}\right) \propto \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \boldsymbol{m}_{N}=\boldsymbol{S}_{N}\left(\begin{array}{l}
\left.\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{y}\right) \\
\boldsymbol{S}_{N}
\end{array}\right. \\
&=\left[\lambda \boldsymbol{I}+\frac{1}{\sigma^{2}} \boldsymbol{\Phi}(\boldsymbol{X})^{\top} \boldsymbol{\Phi}(\boldsymbol{X})\right]^{-1}
\end{aligned}
$$

- \boldsymbol{m}_{N} is equal to the ridge regression (L_{2}) estimate for $\boldsymbol{\beta}$ (Exercise: derive both and compare!)
- Equivalent to maximum likelihood estimate for $\lambda \rightarrow 0$!

Bayesian linear regression

Example: sequential Bayesian learning

- likelihood

$$
\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \beta_{0}+x_{n} \beta_{1}, \sigma^{2}\right)
$$

- prior

$$
\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- This prior is conjugate, so we can do sequential learning

Bayesian linear regression

Example: sequential Bayesian learning

- likelihood

$$
\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \beta_{0}+x_{n} \beta_{1}, \sigma^{2}\right)
$$

- prior

$$
\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- This prior is conjugate, so we can do sequential learning
- 1 data point
- 2 data points
- 20 data points

Bayesian linear regression

Example: sequential Bayesian learning

- likelihood

$$
\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \beta_{0}+x_{n} \beta_{1}, \sigma^{2}\right)
$$

- prior

$$
\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- This prior is conjugate, so we can do sequential learning

- 1 data point
- 2 data points

Bayesian linear regression

Example: sequential Bayesian learning

- likelihood

$$
\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \beta_{0}+x_{n} \beta_{1}, \sigma^{2}\right)
$$

- prior

$$
\mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \frac{1}{\lambda} \boldsymbol{I}\right)
$$

- This prior is conjugate, so we can do sequential learning
- 1 data point
- 2 data points
- 20 data points

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

> Integrate over β to take the posterior uncertainty into account

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \phi\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\beta}$ to take the posterior uncertainty into account

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \mathcal{D}\right) \propto \int_{\boldsymbol{\beta}} p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y}, \sigma^{2}\right) \mathrm{d} \boldsymbol{\beta}
$$

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \phi\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\beta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
& p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \mathcal{D}\right) \propto \int_{\boldsymbol{\beta}} p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y}, \sigma^{2}\right) \mathrm{d} \boldsymbol{\beta} \\
& \propto \int_{\boldsymbol{\beta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right)
\end{aligned}
$$

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\beta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
& p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \mathcal{D}\right) \propto \int_{\boldsymbol{\beta}} p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y}, \sigma^{2}\right) \mathrm{d} \boldsymbol{\beta} \\
& \propto \int_{\boldsymbol{\beta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \propto \int_{\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid y^{\star}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{m}_{N}, \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top}\right)
\end{aligned}
$$

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\beta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
& p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \mathcal{D}\right) \propto \int_{\boldsymbol{\beta}} p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y}, \sigma^{2}\right) \mathrm{d} \boldsymbol{\beta} \\
& \propto \int_{\boldsymbol{\beta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \propto \int_{\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid y^{\star}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{m}_{N}, \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top}\right) \\
& \propto \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \cdot \boldsymbol{m}_{N}, \sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)\right)
\end{aligned}
$$

- Key:
- prediction is again Gaussian

Making predictions

- Prediction for fixed weight estimate $\hat{\boldsymbol{\beta}}$ at input \boldsymbol{x}^{\star} trivial:

$$
p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \hat{\boldsymbol{\beta}}, \sigma^{2}\right)=\mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \hat{\boldsymbol{\beta}}, \sigma^{2}\right)
$$

- Integrate over $\boldsymbol{\beta}$ to take the posterior uncertainty into account

$$
\begin{aligned}
& p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \mathcal{D}\right) \propto \int_{\boldsymbol{\beta}} p\left(y^{\star} \mid \boldsymbol{x}^{\star}, \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta} \mid \boldsymbol{X}, \boldsymbol{y}, \sigma^{2}\right) \mathrm{d} \boldsymbol{\beta} \\
& \propto \int_{\boldsymbol{\beta}} \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{m}_{N}, \boldsymbol{S}_{N}\right) \\
& \propto \int_{\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid y^{\star}, \sigma^{2}\right) \mathcal{N}\left(\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{\beta} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{m}_{N}, \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top}\right) \\
& \propto \mathcal{N}\left(y^{\star} \mid \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right) \cdot \boldsymbol{m}_{N}, \sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)\right)
\end{aligned}
$$

- Key:
- prediction is again Gaussian
- Predictive variance is increased due to the posterior uncertainty in $\boldsymbol{\beta}$.

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\boldsymbol{\phi}(\boldsymbol{x})^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\phi(x)^{\top} \boldsymbol{S}_{N} \phi\left(\boldsymbol{x}^{\prime}\right)
$$

Experiment:

- 9 Gaussian basis functions

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\phi(x)^{\top} \boldsymbol{S}_{N} \phi\left(\boldsymbol{x}^{\prime}\right)
$$

Visualize by sampling from the posterior of β

Experiment:

- 9 Gaussian basis functions

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\phi(x)^{\top} \boldsymbol{S}_{N} \phi\left(x^{\prime}\right)
$$

Visualize by sampling from the

Empirical Observations:

Experiment:

- 9 Gaussian basis functions

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\phi(x)^{\top} \boldsymbol{S}_{N} \phi\left(x^{\prime}\right)
$$

Visualize by sampling from the

Empirical Observations:

Experiment:

- 9 Gaussian basis functions

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\phi\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \phi\left(\boldsymbol{x}^{\star}\right)
$$

Predictive covariance

$$
\phi(x)^{\top} \boldsymbol{S}_{N} \phi\left(x^{\prime}\right)
$$

Visualize by sampling from the

Empirical Observations:

Experiment:

- 9 Gaussian basis functions

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Experiment:

- 9 Gaussian basis functions

Predictive covariance

$$
\boldsymbol{\phi}(\boldsymbol{x})^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Visualize by sampling from the

Empirical Observations:

- Variance approaches noise variance for large sample size

Predictive distribution

Marginal variance for x^{\star}

$$
\sigma^{2}+\boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\star}\right)
$$

Experiment:

- 9 Gaussian basis functions

Predictive covariance

$$
\boldsymbol{\phi}(\boldsymbol{x})^{\top} \boldsymbol{S}_{N} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Visualize by sampling from the posterior of $\boldsymbol{\beta}$

Empirical Observations:

- Variance approaches noise variance for large sample size
- Co-variance between close \boldsymbol{x} values is high

Outline

Linear Regression II

Bayesian linear regression

Model comparison and hypothesis testing

Summary

Model comparison

Motivation

- What degree of polynomials describes the data best?
- Is the linear model at all appropriate?

Model comparison

Motivation

- What degree of polynomials describes the data best?
- Is the linear model at all appropriate?
- Association testing.

Bayesian model comparison

- How do we choose among alternative models?
- Assume we want to choose among models $\mathcal{H}_{0}, \ldots, \mathcal{H}_{M}$ for a dataset \mathcal{D}.

Evidence Prior

Bayesian model comparison

- How do we choose among alternative models?
- Assume we want to choose among models $\mathcal{H}_{0}, \ldots, \mathcal{H}_{M}$ for a dataset \mathcal{D}.
- Posterior probability for a particular model i

$$
p\left(\mathcal{H}_{i} \mid \mathcal{D}\right) \propto \underbrace{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)}_{\text {Evidence }} \underbrace{p\left(\mathcal{H}_{i}\right)}_{\text {Prior }}
$$

Bayesian model comparison

How to calculate the evidence

- The evidence is not the model likelihood!

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\int_{\boldsymbol{\Theta}} p(\mathcal{D} \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta}) \mathrm{d} \boldsymbol{\Theta} \text { for model parameters } \boldsymbol{\Theta}
$$

Bayesian model comparison

How to calculate the evidence

- The evidence is not the model likelihood!

$$
p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)=\int_{\boldsymbol{\Theta}} p(\mathcal{D} \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta}) \mathrm{d} \boldsymbol{\Theta} \text { for model parameters } \boldsymbol{\Theta}
$$

- Remember:

$$
\begin{aligned}
p\left(\boldsymbol{\Theta} \mid \mathcal{H}_{i}, \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{i}, \boldsymbol{\Theta}\right) p(\boldsymbol{\Theta})}{p\left(\mathcal{D} \mid \mathcal{H}_{i}\right)} \\
\text { posterior } & =\frac{\text { likelihood } \cdot \text { prior }}{\text { Evidence }}
\end{aligned}
$$

Bayesian model comparison

Bayesian Occam's razor

- The evidence integral penalizes overly complex models.

A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$. When averaging the likelihood over all possible parameters, more complex models have low fit for most of the setting, resulting in a lower evidence

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bayesian model comparison

Bayesian Occam's razor

- The evidence integral penalizes overly complex models.
- A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$. When averaging the likelihood over all possible
parameters, more complex models have low fit
for most of the setting, resulting in a lower

(C.M. Bishop, Pattern Recognition and Machine

Bayesian model comparison

Bayesian Occam's razor

- The evidence integral penalizes overly complex models.
- A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$.
- When averaging the likelihood over all possible parameters, more complex models have low fit for most of the setting, resulting in a lower evidence

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bayesian model comparison

Bayesian Occam's razor

- The evidence integral penalizes overly complex models.
- A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$.
- When averaging the likelihood over all possible parameters, more complex models have low fit for most of the setting, resulting in a lower evidence
- Complex models have low average over many possible data sets

(C.M. Bishop, Pattern Recognition and Machine Learning)

Bayesian model comparison

Bayesian Occam's razor

- The evidence integral penalizes overly complex models.
- A model with few parameters and lower maximum likelihood $\left(\mathcal{H}_{1}\right)$ may win over a model with a peaked likelihood that requires many more parameters $\left(\mathcal{H}_{2}\right)$.
- When averaging the likelihood over all possible parameters, more complex models have low fit for most of the setting, resulting in a lower evidence
- Complex models have low average over many possible data sets

(C.M. Bishop, Pattern Recognition and Machine

[^0]- Simple models have large evidence on a small range of data sets, extremely low evidence otherwise

Application to GWAS

Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \mathcal{H}_{0}, \boldsymbol{X}, \boldsymbol{\Theta}_{0}\right) & =\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

Depending on the choice of priors, $p\left(\sigma^{2}\right)$ and $p(\beta)$, the required integrals are often tractable in closed form. (Conjugate priors!)

Application to GWAS

Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \mathcal{H}_{0}, \boldsymbol{X}, \boldsymbol{\Theta}_{0}\right) & =\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

- \mathcal{H}_{1} : linear association

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \mathcal{H}_{1}, \boldsymbol{x}_{i}, \boldsymbol{\Theta}_{1}\right) & =\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i} \cdot \beta, \sigma^{2} \boldsymbol{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) & =\int_{\sigma^{2}, \boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i} \cdot \beta, \sigma^{2} \boldsymbol{I}\right) p\left(\sigma^{2}\right) p(\beta)
\end{aligned}
$$

- Depending on the choice of priors, $p\left(\sigma^{2}\right)$ and $p(\beta)$, the required integrals are often tractable in closed form. (Conjugate priors!)

Application to GWAS

Relevance of a single SNP

- Consider an association study.
- \mathcal{H}_{0} : no association

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \mathcal{H}_{0}, \boldsymbol{X}, \boldsymbol{\Theta}_{0}\right) & =\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) & =\int_{\sigma^{2}} \mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma^{2} \boldsymbol{I}\right) p\left(\sigma^{2}\right)
\end{aligned}
$$

- \mathcal{H}_{1} : linear association

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \mathcal{H}_{1}, \boldsymbol{x}_{i}, \boldsymbol{\Theta}_{1}\right) & =\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i} \cdot \beta, \sigma^{2} \boldsymbol{I}\right) \\
p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) & =\int_{\sigma^{2}, \boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}_{i} \cdot \beta, \sigma^{2} \boldsymbol{I}\right) p\left(\sigma^{2}\right) p(\beta)
\end{aligned}
$$

- Depending on the choice of priors, $p\left(\sigma^{2}\right)$ and $p(\beta)$, the required integrals are often tractable in closed form. (Conjugate priors!)

Application to GWAS

Scoring models

- Similar to likelihood ratios, the ratio of the evidences, the Bayes factor can be used to score alternative models:

$$
B F=\ln \frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{0}\right)}
$$

Application to GWAS

Scoring models

- Similar to likelihood ratios, the ratio of the evidences, the Bayes factor can be used to score alternative models:

$$
B F=\ln \frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{0}\right)}
$$

Application to GWAS

Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.

$p\left(\mathcal{H}_{1} \mid \mathcal{D}\right)+p\left(\mathcal{H}_{0} \mid \mathcal{D}\right)=1$, prior probability of observing a real

association.

Application to GWAS

Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.
- Posterior probability of \mathcal{H}_{1}

$$
\begin{aligned}
p\left(\mathcal{H}_{1} \mid \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p(\mathcal{D})} \\
& =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)+p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) p\left(\mathcal{H}_{0}\right)}
\end{aligned}
$$

Application to GWAS

Posterior probability of an association

- Bayes factors are useful, however we would like a probabilistic answer how certain an association really is.
- Posterior probability of \mathcal{H}_{1}

$$
\begin{aligned}
p\left(\mathcal{H}_{1} \mid \mathcal{D}\right) & =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p(\mathcal{D})} \\
& =\frac{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)}{p\left(\mathcal{D} \mid \mathcal{H}_{1}\right) p\left(\mathcal{H}_{1}\right)+p\left(\mathcal{D} \mid \mathcal{H}_{0}\right) p\left(\mathcal{H}_{0}\right)}
\end{aligned}
$$

- $p\left(\mathcal{H}_{1} \mid \mathcal{D}\right)+p\left(\mathcal{H}_{0} \mid \mathcal{D}\right)=1$, prior probability of observing a real association.

Bayes factor versus likelihood ratio

Bayes factor

- Models of different complexity can be objectively compared.
- Statistical significance as posterior probability of a model.

Likelihood ratio

- Likelihood ratio scales with the number of parameters.
- Likelihood ratios have known null distribution, yielding p-values.

Bayes factor versus likelihood ratio

Bayes factor

- Models of different complexity can be objectively compared.
- Statistical significance as posterior probability of a model.
- Typically hard to compute.

Likelihood ratio

- Likelihood ratio scales with the number of parameters.
- Likelihood ratios have known null distribution, yielding p-values.
- Often easy to compute.

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X}

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X}

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Choose identical Gaussian prior for all weights

$$
p(\boldsymbol{\beta})=\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2}\right)
$$

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X}

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Choose identical Gaussian prior for all weights

$$
p(\boldsymbol{\beta})=\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2}\right)
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{\mathrm{g}}^{2}\right) & =\int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{I}\right) \\
& =\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

Marginal likelihood of variance component models

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X}

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Choose identical Gaussian prior for all weights

$$
p(\boldsymbol{\beta})=\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2}\right)
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{\mathrm{g}}^{2}\right) & =\int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{I}\right) \\
& =\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

- Number of hyperparameters independent of number of SNPs

Marginal likelihood of variance component models

Basis functions

- The analogous derivation can be repeated for a feature mapping ϕ

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \phi\left(\boldsymbol{x}_{s}\right) \beta_{s}, \sigma^{2} \boldsymbol{I}\right)=
$$

$$
\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

Basis functions

- The analogous derivation can be repeated for a feature mapping ϕ

$$
\begin{aligned}
& p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \phi\left(\boldsymbol{x}_{s}\right) \beta_{s}, \sigma^{2} \boldsymbol{I}\right)= \\
& \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)
\end{aligned}
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{\mathrm{g}}^{2}\right) & =\int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{I}\right) \\
& =\mathcal{N}(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \underbrace{\boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}}+\sigma^{2} \boldsymbol{I})
\end{aligned}
$$

Marginal likelihood of variance component models

Basis functions

- The analogous derivation can be repeated for a feature mapping ϕ

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \phi\left(\boldsymbol{x}_{s}\right) \beta_{s}, \sigma^{2} \boldsymbol{I}\right)=
$$

$$
\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)
$$

- Marginal likelihood

$$
\begin{aligned}
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{\mathrm{g}}^{2}\right) & =\int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \boldsymbol{I}\right) \\
& =\mathcal{N}(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \underbrace{\boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}}+\sigma^{2} \boldsymbol{I})
\end{aligned}
$$

- $\boldsymbol{K}:(\mathrm{N} \times \mathrm{N})$ kernel or covariance induced by feature mapping ϕ.

Marginal likelihood of variance component models

Application to GWAS

The missing heritability paradox

- Complex traits are regulated by a large number of small effects
- Human height: the best single SNP explains little variance.
- But: height of the parents are highly predictive for the height of the child!

Marginal likelihood of variance component models

Application to GWAS
Linear additive models for complex traits

- Multiple linear regression model over causal SNPs

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s \in \text { causal }} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAS
Linear additive models for complex traits

- Multiple linear regression model over causal SNPs

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s \in \text { causal }} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Which SNPs are causal ?

Approximation: consider all S available common SNPs [Yang et al. 2011]

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAS

Linear additive models for complex traits

- Multiple linear regression model over causal SNPs

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s \in \text { causal }} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Which SNPs are causal ?

Approximation: consider all S available common SNPs [Yang et al. 2011]

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Marginalize out weights

Marginal likelihood of variance component models

Application to GWAS

Linear additive models for complex traits

- Multiple linear regression model over causal SNPs

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s \in \text { causal }} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Which SNPs are causal ?

Approximation: consider all S available common SNPs [Yang et al. 2011]

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p\left(\beta_{s}\right)=\mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2} / S\right)$
- Marginalize out weights

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top}+\sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAS

Linear additive models for complex traits

- Multiple linear regression model over causal SNPs

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s \in \mathrm{causal}} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Which SNPs are causal ?

Approximation: consider all S available common SNPs [Yang et al. 2011]

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_{s} \beta_{s}, \sigma^{2} \boldsymbol{I}\right)
$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p\left(\beta_{s}\right)=\mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2} / S\right)$
- Marginalize out weights

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top}+\sigma^{2} \boldsymbol{I}\right)
$$

- Perform maximum marginal likelihood estimation on σ_{g}^{2} and σ^{2}.

Marginal likelihood of variance component models

Application to GWAS

- Approximate variance model

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)
$$

Marginal likelihood of variance component models

Application to GWAS

- Approximate variance model
$p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)$
- Genetic variance σ_{g}^{2} across chromosomes

Narrow-sense refers to linear additive nart of the heritability

Marginal likelihood of variance component models

Application to GWAS

- Approximate variance model
$p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)$
- Genetic variance σ_{g}^{2} across chromosomes
- (Narrow-sense) heritability

$$
h^{2}=\frac{\sigma_{\mathrm{g}}^{2}}{\sigma_{\mathrm{g}}^{2}+\sigma^{2}}
$$

Marginal likelihood of variance component models

Application to GWAS

- Approximate variance model

$$
p\left(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathrm{g}}^{2}, \sigma^{2}\right)=\mathcal{N}\left(\boldsymbol{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top}+\sigma^{2} \boldsymbol{I}\right)
$$

- Genetic variance σ_{g}^{2} across chromosomes
- (Narrow-sense) heritability

$$
h^{2}=\frac{\sigma_{\mathrm{g}}^{2}}{\sigma_{\mathrm{g}}^{2}+\sigma^{2}}
$$

- Narrow-sense refers to linear additive part of the heritability

Outline

```
Linear Regression II
Bayesian linear regression
```


Model comparison and hypothesis testing

Summary

Summary

- Linear models for curve fitting and multiple linear regression.
- Maximum likelihood and least squares regression are identical.
- Construction of features using a mapping ϕ.
- Regularized least squares and other models that correspond to different choices of loss functions.
- Bayesian linear regression.
- Model comparison and Occam's razor.
- Variance component models in GWAS.

Outlook

- Estimation technique for σ_{g}^{2} and σ^{2}.
- Use marginal linear model for confounder correction in GWAS testing of single SNPs
- Linear mixed models for GWAS testing
- Use marginal linear model for testing for significant associations of sets of variants.
- Idea : Test for $\mathcal{H}_{0}: \sigma_{\mathrm{g}}^{2}=0$ vs. $\mathcal{H}_{1}: \sigma_{\mathrm{g}}^{2}>0$
- Random effects testing

Tasks

- Derive ridge regularized $\boldsymbol{\beta}_{\text {MAP }}$ in linear regression
- Derive posterior distribution (mean and covariance) of $\boldsymbol{\beta}$ in a linear regression under a Normal prior
- Compare them!
- Derive marginal likelihood for linear regression under a Normal prior on $\boldsymbol{\beta}$
- hint: The following expression is a Gaussian convolution:

$$
\begin{aligned}
& \int \mathcal{N}\left(\boldsymbol{a} \mid \boldsymbol{b}, \boldsymbol{\Sigma}_{\boldsymbol{a}}\right) \cdot \mathcal{N}\left(\boldsymbol{b} \mid \boldsymbol{\mu}_{\boldsymbol{b}}, \boldsymbol{\Sigma}_{\boldsymbol{b}}\right) \mathrm{d} \boldsymbol{b} \\
= & \int \mathcal{N}\left(\boldsymbol{a}-\boldsymbol{b} \mid \mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{a}}\right) \cdot \mathcal{N}\left(\boldsymbol{b} \mid \boldsymbol{\mu}_{\boldsymbol{b}}, \boldsymbol{\Sigma}_{\boldsymbol{b}}\right) \mathrm{d} \boldsymbol{b}
\end{aligned}
$$

[^0]: Learning)

