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Further reading, useful material

I Christopher M. Bishop: Pattern Recognition and Machine learning

I Sam Roweis: Gaussian identities
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Regression
Noise model and likelihood

I Given a dataset D = {xn, yn}Nn=1, where xn = {xn,1, . . . , xn,D} is D
dimensional (for example D SNPs), fit parameters θ of a regressor f
with added Gaussian noise:

yn = f(xn;θ) + εn where p(ε |σ2) = N
(
ε | 0, σ2

)
.

I Equivalent likelihood formulation:

p(y |X) =
N∏

n=1

N
(
yn | f(xn;θ), σ

2
)



Regression
Choosing a regressor

I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn | xn · β + c, σ2

)
I Consider bias free case, c = 0,

otherwise include an additional
column of ones in each xn.
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Linear Regression
Maximum likelihood

I Taking the logarithm, we obtain

ln p(y |β,X, σ2) =

N∑
n=1

lnN
(
yn | xn · β, σ2

)
= −N

2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn − xn · β)2︸ ︷︷ ︸
Sum of squares

I The likelihood is maximized when the squared error is minimized.

I Least squares and maximum likelihood are equivalent.
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Linear Regression and Least Squares

y

x

f (xn , )

yn

xn
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(C.M. Bishop, Pattern Recognition and Machine Learning)

E(β) =
1

2

N∑
n=1

(yn − xn · β)2



Linear Regression and Least Squares

I Derivative w.r.t a single weight entry βi

d

dβi
ln p(y |β, σ2) =

d

dβi

[
− 1

2σ2

N∑
n=1

(yn − xn · β)2
]

=
1

σ2

N∑
n=1

(yn − xn · β)xi

I Set gradient w.r.t to β to zero

∇β ln p(y |β, σ2) =
1

σ2

N∑
n=1

x>n (yn − xn · β) = 0

=⇒ βML = (X>X)−1X>︸ ︷︷ ︸
Pseudo inverse

y

I Here, the matrix X is defined as X =

 x1,1 . . . x1, D
. . . . . . . . .
xN,1 . . . xN,D


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Polynomial Curve Fitting
Motivation

I Non-linear relationships.

I Multiple SNPs playing a role for
a particular phenotype.

X

Y
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Polynomial Curve Fitting
Univariate input x

I Use the polynomials up to degree K to construct new features from x

f(x,β) = β0 + β1x+ β2x
2 + · · ·+ βKx

K

=
K∑

k=1

βkφk(x) = φ(x)β

where we defined φ(x) = (1, x, x2, . . . , xK).

φ can be any feature mapping:

I φj(x) = ex, φj(x) = log(x), . . .

I Radial basis functions (also: ‘Gaussian’ basis functions)

φj(x) = exp

(
− (x− µj)

2

2s2

)
I Sigmoidal basis functions

φj(x) = σ
(x− µj

s

)
, where σ(a) =

1

1 + exp(−a)
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Polynomial Curve Fitting
Overfitting

I The order of the polynomial M is crucial to avoid under- and
overfitting.

I Observation: Variance in regression coefficients β = [w?
0, . . . , w9?]

grows dramatically with M
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Polynomial Curve Fitting
Overfitting
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Polynomial Curve Fitting
Generalization performance

E(β) =
1

2

N∑
n=1

(yn − xn · β)2

I Root-mean squared error

ERMS =
√

2E(β)/N

=

√√√√( N∑
n=1

(yn − xn · β)2
)
/N

I Can be measured on training data

I Or when predicting new data (test data)

I Underfitting: large ERMS on train and test
data

I Overfitting: small ERMS on train and large
ERMS on test data.

M

E
R
M
S
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Polynomial Curve Fitting
Overfitting

I The number N of training data is crucial to accurately estimate many
parameters without overfitting.
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Polynomial Curve Fitting
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Polynomial Curve Fitting
Overfitting

I The number N of training data is crucial to accurately estimate many
parameters without overfitting.
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Multivariate regression

Polynomial curve fitting

f(x,β) = β0 + β1x+ · · ·+ βKx
K

=

K∑
k=1

βkφk(x)

= φ(x) · β,

High dimensional regression

f(x,β) =

D∑
d=1

βdxd

= x · β

I Note: When fitting a single binary variable xi, a linear model is most
general!
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Regularized Least Squares
Ridge regression

I Solutions to avoid overfitting:

1. Intelligently choose number of parameters
2. Get more data
3. Regularize the regression weights β

I Quadratically regularized objective function

E(β) =
1

2

N∑
n=1

(yn − φ(xn) · β)2︸ ︷︷ ︸
Squared error

+
λ

2
β>β︸ ︷︷ ︸

Regularizer
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Polynomial curve fitting
L2 regularization

I M = 9, different λ values
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Polynomial curve fitting
L2 regularization

I M = 9, different λ values
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Polynomial curve fitting
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Polynomial curve fitting
L2 regularization

I M = 9, different λ values
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Polynomial curve fitting
L2 regularization

I M = 9, different λ values
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Bias-variance tradeoff

Variance of f est

ED

[
f est − E

[
f est]2]

Estimated functions

x

t
ln λ = 2.6

0 1

−1

0

1

Bias of f est

ED
[
f true − f est]

Mean over all estimates

x

t

0 1

−1

0

1

Experiment:

I 100 random data sets (N = 25)

I learn 25 RBF basis functions

I vary λ

Empirical Observations:

I Bias decreases with smaller λ

I Variance increases with smaller λ

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bias-variance tradeoff
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Bias-variance tradeoff
Effect on mean squared error

yn = f true(xn) + εn

mean squared error(f est) = ED
[
(y − f est(x))2

]
= (bias)2 + variance + noise

Experiment as before:

I 100 random data sets (N = 25)

I learn 25 RBF basis functions

I vary λ

I Compute sample estimates of bias and
variance

I Additionally 1000 test data points to
estimate mean-squared error

ln λ
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Regularized Least Squares
More general regularizers

I More general regularization:

E(β) =
1

2

N∑
n=1

(yn − φ(xn) · β)2︸ ︷︷ ︸
Squared error

+
λ

2

D∑
d=1

|βd|q︸ ︷︷ ︸
Regularizer

I q ≤ 1: non-differentiable
I q < 1: non-convex (could have local optima)

q = 0 .5 q = 1 q = 2 q = 4

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Smaller q yields sparser solution β?

I q = 2: Ridge regression (L2)

I q = 1: Lasso (L1)

I Squared error

I Regularizer
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Loss functions and related methods

I Even more general: general loss function

E(β) =
1

2

N∑
n=1

L(yn − φ(xn) · β)︸ ︷︷ ︸
Loss

+
λ

2

D∑
d=1

|βd|q︸ ︷︷ ︸
Regularizer

I Many state-of-the-art machine learning methods can be expressed
within this framework.

I Linear Regression: squared loss, squared regularizer.
I Support Vector Machine: hinge loss, squared regularizer.
I Lasso: squared loss, L1 regularizer.

I Inference: minimize the cost function E(β), yielding a point estimate
for β.

I Q: How to determine q and the a suitable loss function?
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Loss functions and related methods
Cross validation: minimization of expected loss

Compare candidate models H on generalization performance
(different λ, different regularizers, different basis functions, etc.)

I Randomly split data into K sets of equal size

I For each fold k:

1. Train on all data except the kth set
2. Test evaluation on kth set

I Assess average loss on test sets

1

K

K∑
k=1

Etest
k (H)

I Pick model H with lowest average loss

I Re-train optimal H on all data

fold 1

fold 2

fold 3

test set training set

Total number of samples
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Probabilistic interpretation

I So far: minimization of error functions.

I Back to probabilities?

E(β) =
1

2

N∑
n=1

(yn − φ(xn) · β)2︸ ︷︷ ︸
Squared error

+
λ

2
β>β︸ ︷︷ ︸

Regularizer

= const.−
N∑

n=1

lnN
(
yn | φ(xn) · β, σ2 ) − lnN

(
β | 0, 1

λ
I

)
= const.− ln p(y |β,Φ(X), σ2)︸ ︷︷ ︸

Likelihood

− ln p(β)︸︷︷︸
prior

I Regularized regression equivalent to MAP estimation

I Most alternative choices of regularizers and loss functions can be mapped to an
equivalent probabilistic representation in a similar way.
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Bayesian linear regression

I Likelihood as before

p(y |X,β, σ2) =

N∏
n=1

N
(
yn | φ(xn) · β, σ2

)
I Define a conjugate prior over β

p(β) = N (β | m0,S0 )
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Bayesian linear regression

I Posterior probability of β

p(β |y,X, σ2) ∝
N∏

n=1

N
(
yn | φ(xn) · β, σ2

)
· N (β | m0,S0 )

= N
(
y | Φ(X) · β, σ2I

)
· N (β | m0,S0 )

= N (β | µβ,Σβ )

I where

µβ = Σβ

(
S−10 m0 +

1

σ2
Φ(X)>y

)
Σβ =

[
S−10 +

1

σ2
Φ(X)>Φ(X)

]−1



Bayesian linear regression
Prior choice

I Choice of prior: regularized (ridge) regression

p(β) = N
(
β |m0,S0

)
.

I In this case

p(β |y,X, σ2) ∝ N (β | mN ,SN )

mN = SN

(
S−10 m0 +

1

σ2
Φ(X)>y

)
SN =

[
S−10 +

1

σ2
Φ(X)>Φ(X)

]−1
I mN is equal to the ridge regression (L2) estimate for β

(Exercise: derive both and compare!)

I Equivalent to maximum likelihood estimate for λ→ 0!
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Bayesian linear regression
Example: sequential Bayesian learning

I likelihood

N∏
n=1

N
(
yn | β0 + xnβ1 , σ

2 )
I prior

N
(
β | 0 , 1

λ
I

)
I This prior is conjugate, so we

can do sequential learning

I 1 data point

I 2 data points

I 20 data points
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Making predictions

I Prediction for fixed weight estimate β̂ at input x? trivial:

p(y? |x?, β̂, σ2) = N
(
y? | φ(x?)β̂, σ2

)
I Integrate over β to take the posterior uncertainty into account

p(y? |x?,D) ∝
∫
β

p(y? |x?,β, σ2)p(β |X,y, σ2) dβ

∝
∫
β

N
(
y? | φ(x?)β, σ2 )N (β | mN ,SN )

∝
∫
φ(x?)β

N
(
φ(x?)β | y?, σ2 )N (φ(x?)β | φ(x?)mN ,φ(x

?)SNφ(x
?)>

)
∝ N

(
y? | φ(x?) ·mN , σ

2 + φ(x?)>SNφ(x
?)
)

I Key:

I prediction is again Gaussian
I Predictive variance is increased due to the posterior uncertainty in β.
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Predictive distribution

Marginal variance for x?
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I 9 Gaussian basis functions

Empirical Observations:

I Variance approaches noise variance
for large sample size

I Co-variance between close x values is
high
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Outline

Linear Regression II

Bayesian linear regression

Model comparison and hypothesis testing

Summary



Model comparison
Motivation

I What degree of polynomials
describes the data best?

I Is the linear model at all
appropriate?

I Association testing.

?

Phenome

Genome
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
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Bayesian model comparison

I How do we choose among alternative models?

I Assume we want to choose among models H0, . . . ,HM for a
dataset D.

I Posterior probability for a particular model i

p(Hi | D) ∝ p(D |Hi)︸ ︷︷ ︸
Evidence

p(Hi)︸ ︷︷ ︸
Prior
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Bayesian model comparison
How to calculate the evidence

I The evidence is not the model likelihood!

p(D |Hi) =

∫
Θ
p(D |Θ)p(Θ) dΘ for model parameters Θ .

I Remember:

p(Θ |Hi,D) =
p(D |Hi,Θ)p(Θ)

p(D |Hi)
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likelihood · prior

Evidence



Bayesian model comparison
Bayesian Occam’s razor

I The evidence integral penalizes overly complex
models.

I A model with few parameters and lower
maximum likelihood (H1) may win over a
model with a peaked likelihood that requires
many more parameters (H2).

I When averaging the likelihood over all possible
parameters, more complex models have low fit
for most of the setting, resulting in a lower
evidence

I Complex models have low average over many
possible data sets

I Simple models have large evidence on a small
range of data sets, extremely low evidence
otherwise

Likelihood
H2

H1

(C.M. Bishop, Pattern Recognition and Machine

Learning)
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Application to GWAS
Relevance of a single SNP

I Consider an association study.
I H0 : no association

p(y |H0,X,Θ0) = N
(
y | 0, σ2I

)
p(D |H0) =

∫
σ2

N
(
y | 0, σ2I

)
p(σ2)

I H1: linear association

p(y |H1,xi,Θ1) = N
(
y | xi · β, σ2I

)
p(D |H1) =

∫
σ2,β

N
(
y | xi · β, σ2I

)
p(σ2)p(β)

I Depending on the choice of priors, p(σ2) and p(β), the required
integrals are often tractable in closed form. (Conjugate priors!)
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Application to GWAS
Scoring models

I Similar to likelihood ratios, the ratio of the evidences, the Bayes
factor can be used to score alternative models:

BF = ln
p(D |H1)

p(D |H0)
.
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Application to GWAS
Posterior probability of an association

I Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.

I Posterior probability of H1

p(H1 | D) =
p(D |H1)p(H1)

p(D)

=
p(D |H1)p(H1)

p(D |H1)p(H1) + p(D |H0)p(H0)

I p(H1 | D) + p(H0 | D) = 1, prior probability of observing a real
association.
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Bayes factor versus likelihood ratio

Bayes factor

I Models of different
complexity can be
objectively compared.

I Statistical significance as
posterior probability of a
model.

I Typically hard to compute.

Likelihood ratio

I Likelihood ratio scales with
the number of parameters.

I Likelihood ratios have
known null distribution,
yielding p-values.

I Often easy to compute.
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Marginal likelihood of variance component models

I Consider a linear model, accounting for a set of measured SNPs X

p(y |X,β, σ2) = N
(
y |

S∑
s=1

xsβs, σ
2I

)
I Choose identical Gaussian prior for all weights

p(β) =

S∏
s=1

N
(
βs | 0, σ2g

)
I Marginal likelihood

p(y |X, ) =

∫
β
N
(
y | Xβ, σ2I

)
N
(
β | 0, σ2gI

)

I Number of hyperparameters independent of number of SNPs
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Marginal likelihood of variance component models
Basis functions

I The analogous derivation can be repeated for a feature mapping φ

p(y |X,β, σ2) = N
(
y |

S∑
s=1

φ(xs)βs, σ
2I

)
=

N
(
y | Φ(X)β, σ2I

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
β
N
(
y | Φ(X)β, σ2I

)
N
(
β | 0, σ2gI

)
= N

y | 0, σ2g Φ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I


I K: (N x N) kernel or covariance induced by feature mapping φ.
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Marginal likelihood of variance component models
Application to GWAS

The missing heritability paradox
I Complex traits are regulated by a large number of small effects

I Human height: the best single SNP explains little variance.
I But: height of the parents are highly predictive for the height of the

child!



Marginal likelihood of variance component models
Application to GWAS
Linear additive models for complex traits

I Multiple linear regression model over causal SNPs

p(y |X,β, σ2) = N
(
y |

∑
s∈causal

xsβs , σ
2I
)

I Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

p(y |X,β, σ2) = N
(
y |

S∑
s=1

xsβs , σ
2I
)

I Causal SNPs either in the model or “tagged” by linkage disequilibrium to nearby
common SNPs

I Uncertainty over causal SNPs: Prior on all SNP effects p(βs) = N
(
βs | 0, σ2

g/S
)

I Marginalize out weights

p(y |X, σ2
g , σ

2) = N
(
y |0 , σ2

g

S∑
s=1

1

S
xsx

>
s + σ2I

)
I Perform maximum marginal likelihood estimation on σ2

g and σ2.
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Marginal likelihood of variance component models
Application to GWAS
Linear additive models for complex traits
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Marginal likelihood of variance component models
Application to GWAS

I Approximate variance model
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Summary

I Linear models for curve fitting and multiple linear regression.

I Maximum likelihood and least squares regression are identical.

I Construction of features using a mapping φ.

I Regularized least squares and other models that correspond to
different choices of loss functions.

I Bayesian linear regression.

I Model comparison and Occam’s razor.

I Variance component models in GWAS.



Outlook

I Estimation technique for σ2g and σ2.
I Use marginal linear model for confounder correction in GWAS testing

of single SNPs
I Linear mixed models for GWAS testing

I Use marginal linear model for testing for significant associations of
sets of variants.

I Idea : Test for H0 : σ2
g = 0 vs. H1 : σ2

g > 0
I Random effects testing



Tasks

I Derive ridge regularized βMAP in linear regression

I Derive posterior distribution (mean and covariance) of β in a linear
regression under a Normal prior

I Compare them!
I Derive marginal likelihood for linear regression under a Normal prior

on β
I hint: The following expression is a Gaussian convolution:∫

N (a | b , Σa ) · N ( b | µb , Σb ) db

=

∫
N (a− b | 0 , Σa ) · N ( b | µb , Σb ) db


	Linear Regression II
	Bayesian linear regression
	Model comparison and hypothesis testing
	Summary

