Machine Learning and Statistics in Genetics and Genomics
 III: Introduction to hypothesis testing

Christoph Lippert

Microsoft Research
eScience group

Microsoft'
Research
Los Angeles, USA

Current topics in computational biology
UCLA
Winter quarter 2014

Hypothesis Testing

Introduction

P-values and significance
t-test in linear regression
Likelihood ratio test
Multiple Hypothesis Testing
Model checking - useful heuristics

Outline

Outline

Hypothesis Testing
Introduction
P-values and significance
t-test in linear regression
Likelihood ratio test
Multiple Hypothesis Testing
Model checking - useful heuristics

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $x_{n, s}$: SNP to be tested

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $x_{n, s}$: SNP to be tested
- remaining x_{n} : regression covariates (including bias term)
- Race
- Known background SNPs

Equivalent graphical model
x_{n} : regression covariates

- Environment

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Test \mathcal{H}_{0} : "The true underlying β_{s} that generated the data is 0 for the SNP s."
(true $\boldsymbol{\beta}$ unknown)

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Test \mathcal{H}_{0} : "The true underlying β_{s} that generated the data is 0 for the SNP s." (true $\boldsymbol{\beta}$ unknown)
- Use the estimate $\beta_{s \mathrm{ML}}$ as a test statistic.

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Test \mathcal{H}_{0} : "The true underlying β_{s} that generated the data is 0 for the SNP s." (true β unknown)
- Use the estimate $\beta_{s \mathrm{ML}}$ as a test statistic.
- Intuition: The larger the absolute

Equivalent graphical model
x_{n} : regression covariates value of the estimate $\beta_{s \mathrm{ML}}$, the less likely is $\mathcal{H}_{0}: \beta_{s}=0$.

Hypothesis Testing

Some definitions

Example:

- Given a sample
$\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.

tries to reject \mathcal{H}_{0}.

Hypothesis Testing

Some definitions

Example:

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.

Hypothesis Testing

Some definitions

Example:

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- To show that $\beta_{s} \neq 0$ we can perform a statistical test that tries to reject \mathcal{H}_{0}.
- type 1 error: \mathcal{H}_{0} is rejected but
does hold
- tvne 2 error: \mathcal{H}_{0} is accepted
but does not hold.

Hypothesis Testing

Some definitions

Example:

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- To show that $\beta_{s} \neq 0$ we can perform a statistical test that tries to reject \mathcal{H}_{0}.
- type 1 error: \mathcal{H}_{0} is rejected but does hold.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives

Hypothesis Testing

Some definitions

Example:

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- To show that $\beta_{s} \neq 0$ we can perform a statistical test that tries to reject \mathcal{H}_{0}.
- type 1 error: \mathcal{H}_{0} is rejected but does hold.
- type 2 error: \mathcal{H}_{0} is accepted but does not hold.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives

Hypothesis Testing

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
 the threshold and the sensitivity of the test. This equals the probability of a type-1 error.

Hypothesis Testing

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.

the values of the test statistic
that lead to a rejection of the test at significanco a

Hypothesis Testing

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.

the values of the test statistic that lnad to a reinction of the test at significance α.

Hypothesis Testing

- Given a sample $\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$.
- Test whether $\mathcal{H}_{0}: \beta_{s}=0$ (null hypothesis) or $\mathcal{H}_{1}: \beta_{s} \neq 0$ (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region \mathcal{R}_{α} defines
 the values of the test statistic that lead to a rejection of the test at significance α.

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.
\rightarrow Need to know the null distribution of test statistics. (usually unknown) \rightarrow For every $u \in[0,1]$,

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in[0,1]$,

$$
P_{\mathcal{H}_{0}}(P-\operatorname{value}(x) \leq u)=P_{\mathcal{H}_{0}}\left(x \in \mathcal{R}_{u}\right)=u
$$

P-value

definition

- P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$
P-\operatorname{value}(x)=\inf _{\alpha}\left(x \in \mathcal{R}_{\alpha}\right)
$$

- Probability of observing a test statistic at least as extreme as x, given that \mathcal{H}_{0} is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in[0,1]$,

$$
P_{\mathcal{H}_{0}}(P-\operatorname{value}(x) \leq u)=P_{\mathcal{H}_{0}}\left(x \in \mathcal{R}_{u}\right)=u
$$

- It follows that under \mathcal{H}_{0} the P-values are uniformly distributed in the interval $[0,1]$.

P-value

Permutation procedure

Repeat M times:
> - Permute phenotype y and covariates x jointly over individuals.

> Comnute nermuted test statistic

P-value

Permutation procedure

Repeat M times:

- Permute phenotype \boldsymbol{y} and covariates \boldsymbol{x} jointly over individuals.

Compute permuted test statistic - Add test statistic to emprirical null distribution

P-value

Permutation procedure

Repeat M times:

- Permute phenotype \boldsymbol{y} and covariates \boldsymbol{x} jointly over individuals.
- Compute permuted test statistic

P-value

Permutation procedure

Repeat M times:

- Permute phenotype \boldsymbol{y} and covariates \boldsymbol{x} jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

P-value

Permutation procedure

Repeat M times:

- Permute phenotype \boldsymbol{y} and covariates \boldsymbol{x} jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

The P-value is the quantile of real test statistic in artificial null distribution.

- The quantile is the fraction of the empirical distribution that is more extreme than the test statistic.

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.

Can we find an analytic solution for the distribution of the estimate $\beta_{s M L}$ under

> Equivalent graphical model
> $x_{n}:$ regression covariates

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.
- Can we find an analytic solution for the distribution of the estimate $\beta_{s M L}$ under \mathcal{H}_{0} ?

> Equivalent graphical model $x_{n}:$ regression covariates

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.
- Can we find an analytic solution for the distribution of the estimate $\beta_{s M L}$ under \mathcal{H}_{0} ?
- Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_{0} (with $\beta_{s}=0$).

Equivalent graphical model x_{n} : regression covariates

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.
- Can we find an analytic solution for the distribution of the estimate $\beta_{s \mathrm{ML}}$ under \mathcal{H}_{0} ?
- Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N}\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_{0} (with $\beta_{s}=0$).

Equivalent graphical model
x_{n} : regression covariates
$\boldsymbol{\beta}_{\mathrm{ML}} \sim \mathcal{N}\left(\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{I} \boldsymbol{X}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right)$

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.

$$
\boldsymbol{\beta}_{\mathrm{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.

$$
\boldsymbol{\beta}_{\mathrm{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right)
$$

- We are only interested in one entry $\left(\beta_{s}\right)$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Analytic solution

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- $\mathcal{H}_{0}: \beta_{s}=0$.

$$
\boldsymbol{\beta}_{\mathrm{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right)
$$

- We are only interested in one entry $\left(\beta_{s}\right)$
- Use the marginal distribution of $\beta_{s \mathrm{ML}}$.

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s, s}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Cumulative distribution function

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right)
$$

- Now we know the probability distribution of β_{s}.

- Cumulative distribution function

Cumulative distribution function

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right)
$$

- Now we know the probability distribution of β_{s}.

- But the P value is the probability of observing something at least as extreme.

Cumulative distribution function

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right)
$$

- Now we know the probability distribution of β_{s}.
- But the P value is the probability of observing something at least as extreme.

- Cumulative distribution function:

$$
C D F(x)=P(X<=x)=\int_{-\infty}^{x} p(z) \mathrm{d} z
$$

\rightarrow For the univariate normal distribution with mean μ and variance σ^{2}

Cumulative distribution function

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right)
$$

- Now we know the probability distribution of β_{s}.
- But the P value is the probability of observing something at least as extreme.

- Cumulative distribution function:

$$
C D F(x)=P(X<=x)=\int_{-\infty}^{x} p(z) \mathrm{d} z
$$

- For the univariate normal distribution with mean μ and variance σ^{2} :

$$
\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \mathrm{d} y=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{1}{2} \frac{x-\mu}{\sqrt{\sigma^{2}}}\right)\right)
$$

Cumulative distribution function

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right)
$$

- Now we know the probability distribution of β_{s}.
- But the P value is the probability of observing something at least as extreme.

- Cumulative distribution function:

$$
C D F(x)=P(X<=x)=\int_{-\infty}^{x} p(z) \mathrm{d} z
$$

- For the univariate normal distribution with mean μ and variance σ^{2} :

$$
\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \mathrm{d} y=\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{1}{2} \frac{x-\mu}{\sqrt{\sigma^{2}}}\right)\right)
$$

- $\Rightarrow P=2 \min \left(C D F\left(\beta_{s M L}\right), 1-C D F\left(\beta_{s \mathrm{ML}}\right)\right)$

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML} L} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by-1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

- Sampling distribution of the test statistic should not depend on nuisance parameters.

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by- 1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

Problem:

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by- 1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\boldsymbol{\beta}_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by-1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^{2} \rightarrow \sigma^{2}$.

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\beta_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by- 1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^{2} \rightarrow \sigma^{2}$.
- For small samples use t-distribution with $\nu=N-D$ degrees of freedom!

$$
t=\frac{z \sigma}{\bar{\sigma}} \sim \Gamma\left(\frac{\nu+1}{2}\right) \sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)\left(1+\frac{z^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

Caution!

$$
\boldsymbol{\beta}_{s \mathrm{ML}} \sim \mathcal{N}\left(0, \sigma^{2}\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}\right) \Leftrightarrow z \sim \mathcal{N}(0,1), \quad z=\frac{\beta_{s \mathrm{ML}}}{\sigma \sqrt{\left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{s s}}}
$$

- σ^{2} is unknown, or a nuisance parameter.
- In practice we have to use an estimate $\overline{\sigma_{2}}$ given the full D-by- 1 vector $\boldsymbol{\beta}_{\mathrm{ML}}$!

$$
\overline{\sigma_{2}}=\frac{1}{N-D}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}}\right)
$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^{2} \rightarrow \sigma^{2}$.
- For small samples use t-distribution with $\nu=N-D$ degrees of freedom!

$$
t=\frac{z \sigma}{\bar{\sigma}} \sim \Gamma\left(\frac{\nu+1}{2}\right) \sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)\left(1+\frac{z^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

- For $\nu=+\infty t$-distribution equals $\mathcal{N}(0,1)$.

Some relationships between distributions

- Normal distribution

$$
x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Some relationships between distributions

- Normal distribution

$$
x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- z-score: Standard normal distribution

$$
z_{n}=\frac{\boldsymbol{x}_{n}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- Ratio of a standard normal and an independent χ_{N}^{2} variable

Some relationships between distributions

- Normal distribution

$$
x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- z-score: Standard normal distribution

$$
z_{n}=\frac{\boldsymbol{x}_{n}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- Sum of squares of N iid standard normals: χ^{2} distribution with N dof

$$
\sum_{n=1}^{N} z_{n}^{2} \sim \chi_{N}^{2}
$$

- Ratio of a standard normal and an independent χ_{N}^{2} variable
\rightarrow Ratio of a $\chi_{N_{1}}^{2}$ and an independent $\chi_{N_{2}}^{2}: F$-distribution with N_{1} numerator dof and N_{2} denominator dof

Some relationships between distributions

- Normal distribution

$$
x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- z-score: Standard normal distribution

$$
z_{n}=\frac{\boldsymbol{x}_{n}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- Sum of squares of N iid standard normals: χ^{2} distribution with N dof

$$
\sum_{n=1}^{N} z_{n}^{2} \sim \chi_{N}^{2}
$$

- Ratio of a standard normal and an independent χ_{N}^{2} variable

$$
t=\frac{z_{1}}{\sqrt{\frac{\sum_{n=2}^{N+1} z_{n}^{2}}{N}}} \sim \text { Student }-t(N)
$$

Some relationships between distributions

- Normal distribution

$$
x_{n} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

- z-score: Standard normal distribution

$$
z_{n}=\frac{\boldsymbol{x}_{n}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

- Sum of squares of N iid standard normals: χ^{2} distribution with N dof

$$
\sum_{n=1}^{N} z_{n}^{2} \sim \chi_{N}^{2}
$$

- Ratio of a standard normal and an independent χ_{N}^{2} variable

$$
t=\frac{z_{1}}{\sqrt{\frac{\sum_{n=2}^{N+1} z_{n}^{2}}{N}}} \sim \text { Student }-t(N)
$$

- Ratio of a $\chi_{N_{1}}^{2}$ and an independent $\chi_{N_{2}}^{2}: F$-distribution with N_{1} numerator dof and N_{2} denominator dof

$$
F=\frac{\sum_{n=1}^{N_{1}} z_{n}^{2}}{\sum_{n=N_{1}+1}^{N_{1}+N_{2}} z_{n}^{2}} \sim F\left(N_{1}, N_{2}\right)
$$

Testing in Linear Regression

Likelihood Ratio Test

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Likelihood Ratio Test

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Test $\mathcal{H}_{0}: \beta_{s}=0$ (rest don't matter)

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Likelihood Ratio Test

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right)
$$

- Test $\mathcal{H}_{0}: \beta_{s}=0$ (rest don't matter)
- The ratio of the likelihood using the ML estimator and the ML_{0} estimator restricted to $\mathcal{H}_{0}\left(\beta_{s}=0\right)$ is another common test statistic.

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Likelihood Ratio Test revisited

- Can equivalently compute log-likelihood ratio:

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Likelihood Ratio Test revisited

- Can equivalently compute log-likelihood ratio:

$$
\left.\begin{array}{rl}
\mathrm{LR} & =\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}+}, \sigma_{\mathrm{ML}}^{2}\right) \\
& -\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}_{0}}, \sigma_{\mathrm{ML}}^{0}\right.
\end{array}\right)
$$

Equivalent graphical model
x_{n} : regression covariates

Testing in Linear Regression

Likelihood Ratio Test revisited

- Can equivalently compute log-likelihood ratio:

$$
\left.\begin{array}{rl}
\mathrm{LR} & =\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}+}, \sigma_{\mathrm{ML}}^{2}\right) \\
& -\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}_{0}}, \sigma_{\mathrm{ML}}^{0}\right.
\end{array}\right)
$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ_{1}^{2}. (for $N \rightarrow \infty$)

Testing in Linear Regression

Likelihood Ratio Test revisited

- Can equivalently compute log-likelihood ratio:

$$
\left.\begin{array}{rl}
\mathrm{LR} & =\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}+}, \sigma_{\mathrm{ML}}^{2}\right) \\
& -\sum_{n=1}^{N} \log \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathrm{ML}_{0}}, \sigma_{\mathrm{ML}}^{0}\right.
\end{array}\right)
$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ_{1}^{2}. (for $N \rightarrow \infty$)
- P-value $=1-C D F_{\chi_{1}^{2}}(2 \mathrm{LR})$.

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^{6}$ tests

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^{6}$ tests
- If all tests are independent we would expect 10000 type-1 errors at $\alpha=0.01$! $\left(S=S_{0}\right)$

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^{6}$ tests
- If all tests are independent we would expect 10000 type-1 errors at $\alpha=0.01!\left(S=S_{0}\right)$
- Probability of at least 1 type- 1 error is $1-(1-\alpha)^{S_{0}} \rightarrow 1$.

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^{6}$ tests
- If all tests are independent we would expect 10000 type-1 errors at $\alpha=0.01$! $\left(S=S_{0}\right)$
- Probability of at least 1 type-1 error is $1-(1-\alpha)^{S_{0}} \rightarrow 1$.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

- Individual P-values <0.01 are not significant anymore.

Multiple Hypothesis Testing

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^{6}$ tests
- If all tests are independent we would expect 10000 type-1 errors at $\alpha=0.01$! $\left(S=S_{0}\right)$
- Probability of at least 1 type-1 error is $1-(1-\alpha)^{S_{0}} \rightarrow 1$.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

- Individual P-values <0.01 are not significant anymore.
Need to correct for multiple hypothesis testing!

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\mathrm{FWER}=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\mathrm{FWER}=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\mathrm{FWER}=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_{B}=P \cdot S$

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type- 1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\text { FWER }=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_{B}=P \cdot S$
- Equivalently $P<\frac{\alpha}{S}$ significant.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\mathrm{FWER}=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_{B}=P \cdot S$
- Equivalently $P<\frac{\alpha}{S}$ significant.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type- 1 error	true positives
	S_{0}	$S-S_{0}$

- Bounds the FWER $1-(1-\alpha / S)^{S}$ by α

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\text { FWER }=\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right) \underbrace{\leq}_{\text {Boole's inequality }} \sum_{i \in \mathcal{H}_{0}} \operatorname{Pr}\left(P_{(i)} \leq \alpha\right)
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_{B}=P \cdot S$
- Equivalently $P<\frac{\alpha}{S}$ significant.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

- Bounds the FWER $1-(1-\alpha / S)^{S}$ by α

Multiple Hypothesis Testing

Family-Wise Error Rate (FWER)

$$
\begin{aligned}
\mathrm{FWER} & =\operatorname{Pr}\left(\cup_{i \in \mathcal{H}_{0}} P_{(i)} \leq \alpha\right) \underbrace{\leq}_{\text {Boole's inequality }} \sum_{i \in \mathcal{H}_{0}} \operatorname{Pr}\left(P_{(i)} \leq \alpha\right) \\
& =\alpha \cdot S_{0} \leq \alpha \cdot S
\end{aligned}
$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_{B}=P \cdot S$
- Equivalently $P<\frac{\alpha}{S}$ significant.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

- Bounds the FWER $1-(1-\alpha / S)^{S}$ by α

False Discovery Rate (FDR)

- FWER based correction
(Bonferroni) leads to very
conservative significance thresholds.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type- 1 error	true positives
	S_{0}	$S-S_{0}$

False Discovery Rate (FDR)

- FWER based correction
(Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

False Discovery Rate (FDR)

- FWER based correction
(Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.
- Definition of the FDR:
- $\mathbb{E}\left[\frac{F P}{F P+T P}\right]$

	\mathcal{H}_{0} holds	\mathcal{H}_{0} doesn't hold
\mathcal{H}_{0} accepted	true negatives	false negatives type-2 error
\mathcal{H}_{0} rejected	false positives type-1 error	true positives
	S_{0}	$S-S_{0}$

False Discovery Rate (FDR)

- FWER based correction
(Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.
- Definition of the FDR:
- $\mathbb{E}\left[\frac{F P}{F P+T P}\right]$

- Note: this can not be bounded
when \mathcal{H}_{0} always true $(F N+T P=0)$. In this case
$\mathbb{E}\left[\frac{F P}{F P+T P}\right]=\mathbb{E}\left[\frac{F P}{F P}\right]=1$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\underbrace{\frac{\mathbb{E}[F P]}{F P+F N}}_{i}
$$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\frac{\mathbb{E}[F P]}{\underbrace{F P+F N}_{i}}=\frac{S_{0} \cdot \overbrace{P_{(k)}}^{P_{\mathcal{H}_{0}} \sim \mathcal{U}[0,1]}}{i}
$$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\underbrace{\frac{\mathbb{E}[F P]}{F P+F N}}_{i}=\frac{S_{0} \cdot \overbrace{P_{(k)}}^{P_{\mathcal{H}_{0} \sim \mathcal{U}}[0,1]}}{i} \leq \frac{S \cdot P_{(k)}}{i}
$$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$
2. $k=\underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\underbrace{\frac{\mathbb{E}[F P]}{F P+F N}}_{i}=\frac{S_{0} \cdot \overbrace{P_{(k)}}^{P_{\mathcal{H}_{0} \sim \mathcal{U}}[0,1]}}{i} \leq \frac{S \cdot P_{(k)}}{i}
$$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$
2. $k=\underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$
3. Reject all P_{s} with $P_{s}<\frac{i}{S} \alpha$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\underbrace{\frac{\mathbb{E}[F P]}{F P+F N}}_{i}=\frac{S_{0} \cdot \overbrace{P_{(k)}}^{P_{\mathcal{H}_{0} \sim \mathcal{U}}[0,1]}}{i} \leq \frac{S \cdot P_{(k)}}{i}
$$

False discovery rates - Benjamini Hochberg procedure Algorithm for FDR cutoff α :

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$
2. $k=\underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$
3. Reject all P_{s} with $P_{s}<\frac{i}{S} \alpha$

If tests are independent, then for this procedure:

$$
F D R \leq \frac{\overbrace{F P+T N}^{S_{0}}}{S} \alpha \leq \alpha
$$

$$
\operatorname{FDR}\left(\alpha=P_{(i)}\right)=\underbrace{\frac{\mathbb{E}[F P]}{F P+F N}}_{i}=\frac{S_{0} \cdot \overbrace{P_{(k)}}^{P_{\mathcal{H}_{0} \sim \mathcal{U}}[0,1]}}{i} \leq \frac{S \cdot P_{(k)}}{i}
$$

q-values

Definition of a q-value:

$$
q\left(P_{(s)}\right)=\min _{t \geq P_{(s)}} \operatorname{FDR}(t)
$$

q-values

Definition of a q-value:

$$
q\left(P_{(s)}\right)=\min _{t \geq P_{(s)}} \operatorname{FDR}(t)
$$

"minimum FDR that can be attained while calling that feature significant" (Storey and Tibshirani, 2003)

q-values

Definition of a q-value:

$$
q\left(P_{(s)}\right)=\min _{t \geq P_{(s)}} \operatorname{FDR}(t)
$$

"minimum FDR that can be attained while calling that feature significant" (Storey and Tibshirani, 2003)

- Using the BH procedure it is possible to transform P values into q-values quite easily

Model Checking

- Do my estimated P-values match the true null distribution?
- By definition uniformly distributed under null distribution.

Model Checking

- Do my estimated P-values match the true null distribution?
- By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?

Model Checking

- Do my estimated P-values match the true null distribution?
- By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- In GWAS we perform a large number of tests. (usually in the order of 10^{6})

Model Checking

- Do my estimated P-values match the true null distribution?
- By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- In GWAS we perform a large number of tests. (usually in the order of 10^{6})
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.

Model Checking

- Do my estimated P-values match the true null distribution?
- By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- In GWAS we perform a large number of tests. (usually in the order of 10^{6})
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should
 follow the null distribution

Model Checking

QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.
> Sort test statistics
Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)

Model Checking

QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics

Model Checking

QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
- for example: 2 LR vs. χ_{1}^{2}

Model Checking

QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
- for example: 2 LR vs. χ_{1}^{2}
- If the plot is close to the diagonal, the distributions match up

Model Checking

QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
- for example: 2 LR vs. χ_{1}^{2}
- If the plot is close to the diagonal, the distributions match up

- Deviation from the diagonal indicates inflation or deflation of test statistics.

Correction for inflation

Genomic control ($\lambda_{G C}$)

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor $\lambda_{G C}$.

- GC does not make P-values uniform, but only matches one quantile!
- Assumption that 50% quantile of P-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Correction for inflation

Genomic control ($\lambda_{G C}$)

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor $\lambda_{G C}$.
- Assumption: $\lambda_{G C}$ should be close to 1.

- GC does not make P-values uniform, but only matches one quantile!
- Assumption that 50% quantile of P-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Correction for inflation

Genomic control ($\lambda_{G C}$)

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor $\lambda_{G C}$.
- Assumption: $\lambda_{G C}$ should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.

- GC does not make P-values uniform, but only matches one quantile!
- Assumption that 50% quantile of P-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Correction for inflation

Genomic control ($\lambda_{G C}$)

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor $\lambda_{G C}$.
- Assumption: $\lambda_{G C}$ should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).

- GC does not make P-values uniform, but only matches one quantile!
- Assumption that 50% quantile of P-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Correction for inflation

Genomic control $\left(\lambda_{G C}\right)$

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor $\lambda_{G C}$.
- Assumption: $\lambda_{G C}$ should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- Adjust for degree of inflation by dividing all statistics by ratio of the median (50\%-quantile).
- This procedure yields conservative estimates of the P-value distribution null-distribution.

- GC does not make P-values uniform, but only matches one quantile!
- Assumption that 50% quantile of P-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

