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P-values and significance
t-test in linear regression
Likelihood ratio test
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Model checking - useful heuristics
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Testing in Linear Regression

ply| X) = HN Yo | T+ B0?)

n=1

» z,s SNP to be tested
> remaining x,: regression covariates
(including bias term)
» Race

» Known background SNPs
» Environment
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Testing in Linear Regression

y|X HN yn|mn 8,0 )

n=1

> Test Hg : “The true underlying [
that generated the data is O for the

SNP s."
(true B unknown)

» Use the estimate [\ as a test
statistic.
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Testing in Linear Regression

y|X HN yn|mn 8,0 )

n=1

> Test Hg : “The true underlying [ @ @

that generated the data is O for the & ® : 0?
SNP s.”
O

(true B unknown)

©©

> Use the estimate B4\ as a test
Statistic_ Equivalent graphical model

.. Ty regression covariates
» Intuition: The larger the absolute ne 1€8

value of the estimate BsmL, the less
likely is Hg : 8s = 0.
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Some definitions
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Hypothesis Testing

Some definitions

Example:

>

Given a sample
D={x1,...,zN}.

Test whether Hg : 5s = 0 (null
hypothesis) or Hy : 85 # 0
(alternative hypothesis) is true.

Ho holds

| o doesn't hold

Ho accepted

To show that 85 # 0 we can

true negatives

false negatives
type-2 error

L. Ho rejected
perform a statistical test that

tries to reject Hp.
type 1 error: H, is rejected but
does hold.

type 2 error: H is accepted
but does not hold.

false positives
type-1 error

true positives
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Hypothesis Testing

» Given a sample
D= {.CEl,... ,xN}.

» Test whether Hp : Bs = 0 (null
hypothesis) or H1 : 85 # 0
(alternative hypothesis) is true. I—a

» The significance level « defines o
the threshold and the sensitivity 1

of the test. This equals the
probability of a type-1 error.

» Usually decision is based on a
test statistic.

» The critical region R, defines

the values of the test statistic
that lead to a rejection of the
test at significance a.



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.

P — value(x) = inf (z € Rq)



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.

P — value(x) = inf (z € Rq)



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.
P — value(x) = inf (z € Rq)
«

» Probability of observing a test statistic at least as extreme as x, given that
Ho is true.



P-value

definition
> P-value of a test statistic x is the largest possible «, such that x is still
rejected.
P — value(x) = inf (z € Rq)
«

» Probability of observing a test statistic at least as extreme as x, given that
Ho is true.

» Significance level a becomes threshold on P-value.



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.

P — value(x) = inf (z € Rq)

» Probability of observing a test statistic at least as extreme as x, given that
Ho is true.

» Significance level a becomes threshold on P-value.

> Need to know the null distribution of test statistics. (usually unknown)



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.

P — value(x) = inf (z € Rq)

» Probability of observing a test statistic at least as extreme as x, given that
Ho is true.

» Significance level a becomes threshold on P-value.
> Need to know the null distribution of test statistics. (usually unknown)

» For every u € [0, 1],

Py, (P — value(z) < u) = Py, (z € Ry) =u



P-value

definition

> P-value of a test statistic x is the largest possible «, such that x is still
rejected.

P — value(x) = inf (z € Rq)

» Probability of observing a test statistic at least as extreme as x, given that
Ho is true.

» Significance level a becomes threshold on P-value.
> Need to know the null distribution of test statistics. (usually unknown)

» For every u € [0, 1],

Py, (P — value(z) < u) = Py, (z € Ry) =u

> It follows that under Hg the P-values are uniformly distributed in the
interval [0, 1].
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P-value

Permutation procedure

Repeat M times:
» Permute phenotype y and covariates x
jointly over individuals.
» Compute permuted test statistic

» Add test statistic to emprirical null
distribution

The P-value is the quantile of real test
statistic in artificial null distribution.
» The quantile is the fraction of the

empirical distribution that is more
extreme than the test statistic.

covariates
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Analytic solution
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n=1

> 7‘[0155:0.

» Can we find an analytic solution for the
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Testing in Linear Regression

Analytic solution

N
py| X) = HN(yn | mn-ﬁ,az)

> 7‘[0155:0.

» Can we find an analytic solution for the
distribution of the estimate SsmL under

Ho?
» Intuition: The estimate is a linear
transformation of a Normal distributed @_

variable, namely y ~ NV (X3, 0°I),
where 3 is the value under Ho (with
Bs = 0)-

—1
T T
> ﬂML = (X X) X Yy Equivalent graphical model
—_— T, regression covariates

transformation

BuL ~ N ((XTX)A xX'x8, o? (XTXY1 X'IXx (XTX)A)

4 N
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Analytic solution

n=1

> Ho:Bs =0. @ @

B ~./\/<,8, o2 (XTX)A)
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Testing in Linear Regression

Analytic solution

n=1

> HO : ﬁs =0.
-1
ﬂML~N(B,02 (x7x) ) ®-
> We are only interested in one entry (8s)

» Use the marginal distribution of Bsmr,.

Equivalent graphical model

Fon-t T, regression covariates
BswL ~ N 0,02[(X X) } ;
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Cumulative distribution function
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> Now we know the probability distribution of (;.
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Cumulative distribution function

BamL ~ N (0, o [(XTX)ALS)

> Now we know the probability distribution of (;.

L o

»> But the P value is the probability of observing
something at least as extreme.

Q@)

» Cumulative distribution function:
CDF(z)=P(X <=z) = / p(z)dz

— 00

> For the univariate normal distribution with mean p and variance o*:

/_OON(?J | p,0%) dy = % (1+erf (%x\/;—f))
» = P =2min (CDF(BsmL),1 — CDF(Bsmr))
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Bawi ~ N (0, o2 {(XTX)_I]

v

2. .
o IS unknown, Oor a nuisance parameter.

» In practice we have to use an estimate g2 given the full

D-by-1 vector B!
1

N-—-D

(y— XBur)' (y— XPur)

o9 =

Problem:

Sampling distribution of the test statistic should not
depend on nuisance parameters.

. . _2 2
» For large samples this is not an issue, as 6° — o~.

» For small samples use t-distribution with v = N — D
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Caution!
BsmL ~ N (O, o2 {(XTX)_I]

2. .
o IS unknown, Oor a nuisance parameter.

v

» In practice we have to use an estimate g2 given the full
D-by-1 vector B!

1
N-D

(y— XBur)' (y— XPur)

o9 =

Problem:

> Sampling distribution of the test statistic should not
depend on nuisance parameters.

. . _2 2
» For large samples this is not an issue, as 6° — o~.

» For small samples use t-distribution with v = N — D
degrees of freedom!

zo v+1 v 22\ 2
tfgrvl“( 5 )\/1/7r1“(§) (1—|—7>

> For v = +oo0 t-distribution equals N (0, 1).
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Some relationships between distributions
» Normal distribution
zn ~ N (1, 0%)
> z-score: Standard normal distribution

Zn::rn—HNN(O71)
g

> Sum of squares of N iid standard normals: 2 distribution with N dof
N
2 2
Z Zn ~ XN
n=1

» Ratio of a standard normal and an independent X?v variable

t= + ~ Student—t(N)
Zni—z 5

N

> Ratio of a x?vl and an independent X?Vz: F-distribution with N1 numerator dof
and N2 denominator dof

Ny 2
Zn:l Zn
ZN1+N2 22

n=N1+4+1°n

F= ~ F(N1, N2)
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Testing in Linear Regression
Likelihood Ratio Test

N
p(y| X) =TI N (g | @0~ B,0%)

n=1

» Test Ho : Bs = 0 (rest don’t matter)
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Testing in Linear Regression
Likelihood Ratio Test

N
Py X) =TI N (vn | @0 B,07)
n=1
» Test Ho : Bs = 0 (rest don’t matter) @ @

» The ratio of the likelihood using the
ML estimator and the ML, ®_
estimator restricted to Hg (8s = 0)

is another common test statistic.

® ® =O7
D

N

Equivalent graphical model

N Ty regression covariates
o N (o | @0 - B o) "

N
Hn:1N(@/n | mn'/@MLo’UI%AL())
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= &) ()
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Testing in Linear Regression
Likelihood Ratio Test revisited

» Can equivalently compute
log-likelihood ratio:

N
LR = Zlogj\/(yn | T - But, o)

n=1

N
—Zlog/\/(yn | zp 'ﬁMLO,UEALO)

n=1

» Wilks’ theorem: 2LR follows a
Chi-square distribution with 1
degree-of-freedom 7.

(for N — o0)

> P-value = 1 — CDF,2(2LR).
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Motivation

» Significance level a equals
probability of type-1 error.

» In GWAS we perform S = 10° tests

» If all tests are independent we would
expect 10000 type-1 errors at
a=0.01! (S = 95))

» Probability of at least 1 type-1 error
is1—(1—a)% 1.

» Individual P-values < 0.01 are not
significant anymore.
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Multiple Hypothesis Testing

Motivation

» Significance level a equals
probability of type-1 error.

» In GWAS we perform S = 10° tests

» If all tests are independent we would

expect 10000 type-1 errors at Lo holds | #o doesn't hold
Ho accepted true negatives false negatives
o = 00].' (S = S[)) type-2 error
Ho rejected false positives true positives
» Probability of at least 1 type-1 error type-1 error

So { S —So

is1—(1—a)% - 1. i
> Individual P-values < 0.01 are not
significant anymore.

Need to correct for multiple hypothesis
testing!
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Family-Wise Error Rate (FWER)
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» Probability of at least one type-2

error.
H Ho holds [ o doesn’t hold
Ho accepted true negatives false negatives
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Family-Wise Error Rate (FWER)

FWER = Pr (Uiey, Py < @)

» Probability of at least one type-2
error.

» Correct by bounding the FWER.

» Bonferroni correction: Pg =P - S
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Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

v

v

v

v

FWER = Pr (Uiey, Py < @)

Probability of at least one type-2
error.

Correct by bounding the FWER.
Bonferroni correction: Pg = P - S

Equivalently P < % significant.
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true negatives
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Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

FWER = Pr (Uiey, Py < @)

» Probability of at least one type-2
error.

» Correct by bounding the FWER.
» Bonferroni correction: Pg =P - S
» Equivalently P < % significant.

» Bounds the FWER 1 — (1 — a/S)°
by

I

Ho holds

[ o doesn’t hold

Ho accepted

true negatives

false negatives
type-2 error

Ho rejected

false positives
type-1 error

true positives

I

So

N

S —So



Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

FWER = Pr (Uien, Py <) < > Pr(Pg<a)

Boole's inequality i€Ho

» Probability of at least one type-2

error.
. H Ho holds [ o doesn’t hold
> CorreCt by bOUndlng the FWER Ho accepted true negatives false negatives
. . type-2 error
> Bonferror” correction: PB == P ° S Ho rejected false positives true positives
o . type-1 error
» Equivalently P < g significant. I % [ 5-5%
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by



Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

FWER = Pr (Uiey, Py < @) < Z Pr (P < a)
Boole's inequality 1€Ho
=a-S<a-S

» Probability of at least one type-2

error.
. H Ho holds [ o doesn’t hold
> CorreCt by bOUndlng the FWER Ho accepted true negatives false negatives
. . type-2 error
> Bonferror” correction: PB == P ° S Ho rejected false positives true positives
o . type-1 error
» Equivalently P < g significant. I % [ 5-5%

» Bounds the FWER 1 — (1 — a/S)°
by



False Discovery Rate (FDR)

» FWER based correction
(Bonferroni) leads to very
conservative significance thresholds.
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False Discovery Rate (FDR)

» FWER based correction
(Bonferroni) leads to very
conservative significance thresholds.

» Because of the abundance of tests
we might be willing to accept a few
false positives.
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False Discovery Rate (FDR)

» FWER based correction
(Bonferroni) leads to very
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False Discovery Rate (FDR)

» FWER based correction
(Bonferroni) leads to very
conservative significance thresholds.

» Because of the abundance of tests
we might be willing to accept a few
false positives.

» Definition of the FDR:

FP
» K| ——
{FP + TP}

» Note: this can not be bounded
when Hq always true
(FN +TP =0). In this case

FP FP
E|l—— | =E|—| =1
[FP+TP] [FP}

Il

Ho holds

| #Ho doesn't hold

Ho accepted

true negatives

false negatives
type-2 error

Ho rejected false positives true positives
type-1 error
I So [ S —3So
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False discovery rates - Benjamini Hochberg procedure

Algorithm for FDR cutoff a:
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False discovery rates - Benjamini Hochberg procedure

Algorithm for FDR cutoff a:
1. Sort: P(l) < P(Q) <. < P(S)

2. k = argmax P(;) < %a
i
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False discovery rates - Benjamini Hochberg procedure
Algorithm for FDR cutoff a:
1. Sort: P(l) < P(Q) <. < P(S)
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False discovery rates - Benjamini Hochberg procedure

Algorithm for FDR cutoff a:
1. Sort: P(l) < P(Q) <. < P(S)

2. k = argmax P(;) < %a
i

3. Reject all Ps with P < %a

If tests are independent, then for this
procedure:

—_———
FP+TN
FDRS%aSa

_H“H,‘H'Th_m— S
H’ﬁum“ﬁ’m’“‘l?"“; "
i
Pry~[0,1]
P
E[FP] So P(k) < S - P(k)
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g-values

Definition of a g-value:

q(P(s)) = mintzp(s)FDR(t)
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“minimum FDR that can be attained
while calling that feature significant” P '
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T




g-values

Definition of a g-value:
q(P(S)) = mintzp(S)FDR(t)

“minimum FDR that can be attained
while calling that feature significant” P '

(Storey and Tibshirani, 2003) -
» Using the BH procedure it is Py i,
possible to transform P values into
g-values quite easily

=T




Model Checking

> Do my estimated P-values match
the true null distribution?
» By definition uniformly distributed
under null distribution.
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Model Checking

> Do my estimated P-values match
the true null distribution?
» By definition uniformly distributed
under null distribution.

fodnbs-Sk-cov FAST LMM 2010.11 916,80 41Tab it

» Do the empirical results match my
assumptions on the null model?

01 02 03 04 05 06

> In GWAS we perform a large
number of tests. (usually in the
order of 10°) :

> Use the strong prior knowledge that
in GWAS almost all of the test
SNPs have no effect on the
phenotype.

tempiab

s, 2=1.4093
= e
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» Empirical test statistics should
follow the null distribution
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null

distribution.
> Sort test statistics
> Plot test statistics against (y-axis) .
quantiles of the theoretical ;
null-distribution (z-axis) =
» for example: 2LR vs. x? i prad
» If the plot is close to the diagonal, 4 ;
. . - : H : + 3=1.409
the distributions match up 2 4 & 8 10 12 14 & 18 2

Expected Log P values

» Deviation from the diagonal
indicates inflation or deflation of
test statistics.



Correction for inflation

Genomic control (Acc)

> Ratio of the 50% quantiles between
theoretical distribution and
test-statistics known as the genomic
inflation factor Agc.

Observed Log P values.

temp.tab

N
N

4//

© aetam

12 14 6 18 20

2 4 ERNC
Expected Log P values

GC does not make P-values
uniform, but only matches one
quantile!

Assumption that 50% quantile
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Example: human height with
thousands of causal SNPs
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Genomic control (Acc)

Ratio of the 50% quantiles between
theoretical distribution and
test-statistics known as the genomic
inflation factor Agc.

Assumption: \gc should be close to
1.

Estimate degree of inflation (deflation)
from this ratio.

Adjust for degree of inflation by
dividing all statistics by ratio of the
median (50%-quantile).

Observed Log P values.

temp.tab
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Correction for inflation

Genomic control (Acc)

temp tab

> Ratio of the 50% quantiles between
theoretical distribution and
test-statistics known as the genomic
inflation factor Agc.

» Assumption: \g¢ should be close to

[}
1 o o1 02 03 04 05 06 07 08 08 1

> Estimate degree of inflation (deflation)
from this ratio.

» GC does not make P-values
uniform, but only matches one

» Adjust for degree of inflation by quantile!
divid.ing all statistics. by ratio of the > Assumption that 50% quantile
median (50%-quantile). of P-values is null-only does
» This procedure yields conservative not need to hold in practice.
estimates of the P-value distribution > Example: human height with

null-distribution. thousands of causal SNPs
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