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Testing in Linear Regression

p(y |X) =

N∏
n=1

N
(
yn | xn · β, σ2

)
I xn,s: SNP to be tested
I remaining xn: regression covariates

(including bias term)
I Race
I Known background SNPs
I Environment
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)
I Test H0 : “The true underlying βs

that generated the data is 0 for the
SNP s.”
(true β unknown)

I Use the estimate βsML as a test
statistic.

I Intuition: The larger the absolute
value of the estimate βsML, the less
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Hypothesis Testing
Some definitions

Example:

I Given a sample
D = {x1, . . . , xN}.

I Test whether H0 : βs = 0 (null
hypothesis) or H1 : βs 6= 0
(alternative hypothesis) is true.

I To show that βs 6= 0 we can
perform a statistical test that
tries to reject H0.

I type 1 error: H0 is rejected but
does hold.

I type 2 error: H0 is accepted
but does not hold.
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Hypothesis Testing

I Given a sample
D = {x1, . . . , xN}.

I Test whether H0 : βs = 0 (null
hypothesis) or H1 : βs 6= 0
(alternative hypothesis) is true.

I The significance level α defines
the threshold and the sensitivity
of the test. This equals the
probability of a type-1 error.

I Usually decision is based on a
test statistic.

I The critical region Rα defines
the values of the test statistic
that lead to a rejection of the
test at significance α.
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P -value
definition

I P -value of a test statistic x is the largest possible α, such that x is still
rejected.

P − value(x) = inf
α

(x ∈ Rα)

I Probability of observing a test statistic at least as extreme as x, given that
H0 is true.

I Significance level α becomes threshold on P -value.

I Need to know the null distribution of test statistics. (usually unknown)

I For every u ∈ [0, 1],

PH0
(P − value(x) ≤ u) = PH0

(x ∈ Ru) = u

I It follows that under H0 the P -values are uniformly distributed in the
interval [0, 1].
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P -value
Permutation procedure

Repeat M times:

I Permute phenotype y and covariates x
jointly over individuals.

I Compute permuted test statistic

I Add test statistic to emprirical null
distribution

The P -value is the quantile of real test
statistic in artificial null distribution.

I The quantile is the fraction of the
empirical distribution that is more
extreme than the test statistic.

covariates
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Testing in Linear Regression
Analytic solution

p(y |X) =
N∏

n=1

N
(
yn | xn · β, σ2 )

I H0 : βs = 0.

I Can we find an analytic solution for the
distribution of the estimate βsML under
H0?

I Intuition: The estimate is a linear
transformation of a Normal distributed
variable, namely y ∼ N

(
Xβ , σ2I

)
,

where β is the value under H0 (with
βs = 0).

I βML =
(
X>X

)−1

X>︸ ︷︷ ︸
transformation

y

βML ∼ N
((
X>X

)−1

X>Xβ , σ2
(
X>X

)−1

X>IX
(
X>X

)−1
)

βML ∼ N
(
β , σ2

(
X>X

)−1
)
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Cumulative distribution function

βsML ∼ N
(

0 , σ2

[(
X>X

)−1
]
ss

)
I Now we know the probability distribution of βs.

I But the P value is the probability of observing
something at least as extreme.

I Cumulative distribution function:

CDF (x) = P (X <= x) =

∫ x

−∞
p(z) d z

I For the univariate normal distribution with mean µ and variance σ2:∫ x

−∞
N
(
y | µ , σ2 ) d y =

1

2

(
1 + erf

(
1

2

x− µ√
σ2

))
I ⇒ P = 2min (CDF (βsML), 1− CDF (βsML))
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Caution!

βsML ∼ N
(

0 , σ2

[(
X>X

)−1
]
ss

)
⇔ z ∼ N (0 , 1) , z =

βsML

σ
√[

(X>X)−1]
ss

I σ2 is unknown, or a nuisance parameter.

I In practice we have to use an estimate σ̄2 given the full
D-by-1 vector βML!

σ̄2 =
1

N −D (y −XβML)> (y −XβML)

Problem:

I Sampling distribution of the test statistic should not
depend on nuisance parameters.

I For large samples this is not an issue, as σ̄2 → σ2.

I For small samples use t-distribution with ν = N −D
degrees of freedom!

t =
zσ

σ̄
∼ Γ(

ν + 1

2
)
√
νπΓ(

ν

2
)

(
1 +

z2

ν

)− ν+1
2

I For ν = +∞ t-distribution equals N ( 0 , 1 ).
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Some relationships between distributions
I Normal distribution

xn ∼ N
(
µ , σ2)

I z-score: Standard normal distribution

zn =
xn − µ
σ

∼ N (0 , 1)

I Sum of squares of N iid standard normals: χ2 distribution with N dof

N∑
n=1

z2n ∼ χ2
N

I Ratio of a standard normal and an independent χ2
N variable

t =
z1√∑N+1
n=2 z2n
N

∼ Student−t(N)

I Ratio of a χ2
N1

and an independent χ2
N2

: F -distribution with N1 numerator dof
and N2 denominator dof

F =

∑N1
n=1 z

2
n∑N1+N2

n=N1+1 z
2
n

∼ F (N1, N2)
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Testing in Linear Regression
Likelihood Ratio Test

p(y |X) =

N∏
n=1

N
(
yn | xn · β, σ2

)
I Test H0 : βs = 0 (rest don’t matter)

I The ratio of the likelihood using the
ML estimator and the ML0

estimator restricted to H0 (βs = 0)
is another common test statistic.

∏N
n=1N

(
yn | xn · βML, σ

2
ML

)∏N
n=1N

(
yn | xn · βML0 , σ

2
ML0

)

� 

�� 

�2 

Equivalent graphical model

xn: regression covariates
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Testing in Linear Regression
Likelihood Ratio Test revisited

I Can equivalently compute
log-likelihood ratio:

LR =

N∑
n=1

logN
(
yn | xn · βML+, σ

2
ML

)
−

N∑
n=1

logN
(
yn | xn · βML0

, σ2
ML0

)

I Wilks’ theorem: 2LR follows a
Chi-square distribution with 1
degree-of-freedom χ2

1.
(for N →∞)

I P -value = 1− CDFχ2
1
(2LR).
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xn: regression covariates
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Multiple Hypothesis Testing
Motivation

I Significance level α equals
probability of type-1 error.

I In GWAS we perform S = 106 tests

I If all tests are independent we would
expect 10000 type-1 errors at
α = 0.01! (S = S0)

I Probability of at least 1 type-1 error
is 1− (1− α)S0 → 1.

I Individual P -values < 0.01 are not
significant anymore.

Need to correct for multiple hypothesis
testing!

H0 holds H0 doesn’t hold

H0 accepted true negatives false negatives
type-2 error

H0 rejected false positives true positives
type-1 error

S0 S − S0
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Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

FWER = Pr
(
∪i∈H0P(i) ≤ α

)

≤︸︷︷︸
Boole’s inequality

∑
i∈H0

Pr
(
P(i) ≤ α

)
= α · S0 ≤ α · S

I Probability of at least one type-2
error.

I Correct by bounding the FWER.

I Bonferroni correction: PB = P · S
I Equivalently P <

α

S
significant.

I Bounds the FWER 1− (1− α/S)S
by α

H0 holds H0 doesn’t hold

H0 accepted true negatives false negatives
type-2 error

H0 rejected false positives true positives
type-1 error

S0 S − S0
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False Discovery Rate (FDR)

I FWER based correction
(Bonferroni) leads to very
conservative significance thresholds.

I Because of the abundance of tests
we might be willing to accept a few
false positives.

I Definition of the FDR:

I E
[

FP

FP + TP

]
I Note: this can not be bounded

when H0 always true
(FN + TP = 0). In this case

E
[

FP

FP + TP

]
= E

[
FP

FP

]
= 1

H0 holds H0 doesn’t hold

H0 accepted true negatives false negatives
type-2 error

H0 rejected false positives true positives
type-1 error

S0 S − S0
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False discovery rates - Benjamini Hochberg procedure
Algorithm for FDR cutoff α:

1. Sort: P(1) ≤ P(2) ≤ · · · ≤ P(S)

2. k = argmax
i

P(i) ≤
i

S
α

3. Reject all Ps with Ps <
i

S
α

If tests are independent, then for this
procedure:

FDR ≤

︷ ︸︸ ︷
FP + TN

S0

S
α ≤ α

�1 
�1 �1 �1 �1 �1 �1 �1 

�1 �1 �1 

�0 
�0 

�0 

�0 

�0 

�0 

�0 

�0 

�0 

�0 

� 

�(�) 

�

�
� 

FDR(α = P(i)) =
E[FP ]

FP + FN︸ ︷︷ ︸
i

=
S0 ·

PH0
∼U [0,1]︷︸︸︷
P(k)

i
≤
S · P(k)

i
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q-values

Definition of a q-value:

q(P(s)) = mint≥P(s)
FDR(t)

“minimum FDR that can be attained
while calling that feature significant”
(Storey and Tibshirani, 2003)

I Using the BH procedure it is
possible to transform P values into
q-values quite easily �1 
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Model Checking

I Do my estimated P -values match
the true null distribution?

I By definition uniformly distributed
under null distribution.

I Do the empirical results match my
assumptions on the null model?

I In GWAS we perform a large
number of tests. (usually in the
order of 106)

I Use the strong prior knowledge that
in GWAS almost all of the test
SNPs have no effect on the
phenotype.

I Empirical test statistics should
follow the null distribution
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null
distribution.

I Sort test statistics
I Plot test statistics against (y-axis)

quantiles of the theoretical
null-distribution (x-axis)

I for example: 2LR vs. χ2
1

I If the plot is close to the diagonal,
the distributions match up

I Deviation from the diagonal
indicates inflation or deflation of
test statistics.
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Correction for inflation
Genomic control (λGC)

I Ratio of the 50% quantiles between
theoretical distribution and
test-statistics known as the genomic
inflation factor λGC .

I Assumption: λGC should be close to
1.

I Estimate degree of inflation (deflation)
from this ratio.

I Adjust for degree of inflation by
dividing all statistics by ratio of the
median (50%-quantile).

I This procedure yields conservative
estimates of the P -value distribution
null-distribution.

I GC does not make P -values
uniform, but only matches one
quantile!

I Assumption that 50% quantile
of P -values is null-only does
not need to hold in practice.

I Example: human height with
thousands of causal SNPs
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