Machine Learning and Statistics in Genetics and Genomics III: Introduction to hypothesis testing

Christoph Lippert

Microsoft Research eScience group Research

Los Angeles, USA

Current topics in computational biology UCLA Winter quarter 2014

Introduction P-values and significance t-test in linear regression Likelihood ratio test Multiple Hypothesis Testing Model checking - useful heuristics

Outline

Outline

Hypothesis Testing

Introduction P-values and significance t-test in linear regression Likelihood ratio test Multiple Hypothesis Testing Model checking - useful heuristics

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{eta}, \sigma^2)$$

- ► x_{n,s}: SNP to be tested
- remaining x_n: regression covariates (including bias term)
 - Race
 - Known background SNPs
 - Environment

Equivalent graphical model

 x_n : regression covariates

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{eta}, \sigma^2)$$

• $x_{n,s}$: SNP to be tested

 remaining x_n: regression covariates (including bias term)

- Race
- Known background SNPs
- Environment

Equivalent graphical model

 x_n : regression covariates

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

- $x_{n,s}$: SNP to be tested
- remaining x_n: regression covariates (including bias term)
 - Race
 - Known background SNPs
 - Environment

Equivalent graphical model

 x_n : regression covariates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

Test H₀ : "The true underlying β_s that generated the data is 0 for the SNP s."

(true β unknown)

- Use the estimate β_{sML} as a test statistic.
- Intuition: The larger the absolute value of the estimate β_{sML}, the less likely is H₀ : β_s = 0.

Equivalent graphical model

 x_n : regression covariates

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

- Test H₀: "The true underlying β_s that generated the data is 0 for the SNP s."
 (true β unknown)
- Use the estimate β_{sML} as a test statistic.
- Intuition: The larger the absolute value of the estimate β_{sML}, the less likely is H₀ : β_s = 0.

Equivalent graphical model

 x_n : regression covariates

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

- Test H₀: "The true underlying β_s that generated the data is 0 for the SNP s."
 (true β unknown)
- Use the estimate β_{sML} as a test statistic.
- Intuition: The larger the absolute value of the estimate β_{sML}, the less likely is H₀ : β_s = 0.

Equivalent graphical model

 x_n : regression covariates

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2 \right)$$

- Test H₀: "The true underlying β_s that generated the data is 0 for the SNP s." (true β unknown)
- Use the estimate β_{sML} as a test statistic.
- Intuition: The larger the absolute value of the estimate β_{sML}, the less likely is H₀ : β_s = 0.

Equivalent graphical model

 x_n : regression covariates

Some definitions

Example:

• Given a sample $\mathcal{D} = \{x_1, \dots, x_N\}.$

- ► Test whether \mathcal{H}_0 : $\beta_s = 0$ (null hypothesis) or \mathcal{H}_1 : $\beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ► type 1 error: H₀ is rejected but does hold.

▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

Some definitions

Example:

Given a sample

 $\mathcal{D} = \{x_1, \ldots, x_N\}.$

- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ► **type 1 error:** \mathcal{H}_0 is rejected but does hold.

▶ type 2 error: H₀ is accepted but does not hold.

Some definitions

Example:

► Given a sample

 $\mathcal{D} = \{x_1, \ldots, x_N\}.$

- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject ℋ₀.
- ► type 1 error: H₀ is rejected but does hold.

► type 2 error: H₀ is accepted but does not hold.

Some definitions

Example:

Given a sample

 $\mathcal{D} = \{x_1, \ldots, x_N\}.$

- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ► type 1 error: H₀ is rejected but does hold.
- ▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives
		type-2 error
H_0 rejected	false positives	true positives
	type-1 error	

Some definitions

Example:

Given a sample

 $\mathcal{D} = \{x_1, \ldots, x_N\}.$

- ► Test whether $\mathcal{H}_0 : \beta_s = 0$ (null hypothesis) or $\mathcal{H}_1 : \beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ► type 1 error: H₀ is rejected but does hold.
- ► type 2 error: H₀ is accepted but does not hold.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

- Given a sample $\mathcal{D} = \{x_1, \dots, x_N\}.$
- ► Test whether H₀: β_s = 0 (null hypothesis) or H₁: β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region R_α defines the values of the test statistic that lead to a rejection of the test at significance α.

・ロト ・ 一下・ ・ ヨト・

- Given a sample $\mathcal{D} = \{x_1, \dots, x_N\}.$
- ► Test whether H₀: β_s = 0 (null hypothesis) or H₁: β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region R_α defines the values of the test statistic that lead to a rejection of the test at significance α.

- Given a sample $\mathcal{D} = \{x_1, \dots, x_N\}.$
- ► Test whether H₀: β_s = 0 (null hypothesis) or H₁: β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region R_α defines the values of the test statistic that lead to a rejection of the test at significance α.

- Given a sample $\mathcal{D} = \{x_1, \dots, x_N\}.$
- ► Test whether H₀: β_s = 0 (null hypothesis) or H₁: β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region R_α defines the values of the test statistic that lead to a rejection of the test at significance α.

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \operatorname{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0, 1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \operatorname{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0, 1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \operatorname{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0, 1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \operatorname{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0,1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \text{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)

For every $u \in [0,1]$,

$$P_{\mathcal{H}_0}(P - \operatorname{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \text{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0, 1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

definition

P-value of a test statistic x is the largest possible α, such that x is still rejected.

$$P - \operatorname{value}(x) = \inf_{\alpha} (x \in \mathcal{R}_{\alpha})$$

- Probability of observing a test statistic at least as extreme as x, given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- For every $u \in [0, 1]$,

$$P_{\mathcal{H}_0}(P - \text{value}(x) \le u) = P_{\mathcal{H}_0}(x \in \mathcal{R}_u) = u$$

P-value Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

Permutation procedure

Repeat ${\cal M}$ times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution
- The *P*-value is the quantile of real test statistic in artificial null distribution.
 - The quantile is the fraction of the empirical distribution that is more extreme than the test statistic.

Analytic solution

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

$$\blacktriangleright \mathcal{H}_0: \beta_s = 0.$$

- Can we find an analytic solution for the distribution of the estimate β_{sML} under H₀?
- lutuition: The estimate is a linear transformation of a Normal distributed variable, namely $y \sim \mathcal{N}(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_0 (with $\beta_s = 0$).

$$\blacktriangleright \ \beta_{\mathsf{ML}} = \underbrace{\left(X^\top X \right)^{-1} X^\top}_{} y$$

Equivalent graphical model x_n : regression covariates

(日)、

Analytic solution

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

 $\blacktriangleright \mathcal{H}_0: \beta_s = 0.$

Can we find an analytic solution for the distribution of the estimate β_{sML} under H₀?

• Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N} (\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_0 (with $\beta_s = 0$).

$$\blacktriangleright \ \beta_{\mathsf{ML}} = \underbrace{\left(X^\top X \right)^{-1} X^\top}_{} y$$

Equivalent graphical model x_n : regression covariates

(日) (同) (日) (日)

Analytic solution

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

- $\blacktriangleright \mathcal{H}_0: \beta_s = 0.$
- Can we find an analytic solution for the distribution of the estimate β_{sML} under H₀?
- Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N} (\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_0 (with $\beta_s = 0$).

$$\blacktriangleright \ \beta_{\mathsf{ML}} = \underbrace{\left(\boldsymbol{X}^\top \boldsymbol{X} \right)^{-1} \boldsymbol{X}^\top}_{} \boldsymbol{y}$$

Equivalent graphical model x_n : regression covariates

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Analytic solution

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

- $\blacktriangleright \mathcal{H}_0: \beta_s = 0.$
- Can we find an analytic solution for the distribution of the estimate β_{sML} under H₀?
- Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N} \left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I} \right)$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_0 (with $\beta_s = 0$).

$$\blacktriangleright \ \beta_{\mathsf{ML}} = \underbrace{\left(\boldsymbol{X}^\top \boldsymbol{X} \right)^{-1} \boldsymbol{X}^\top}_{} \boldsymbol{y}$$

: 0?

Equivalent graphical model x_n : regression covariates

 $\boldsymbol{\beta}_{\mathsf{ML}} \sim \mathcal{N}\left(\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{I}\boldsymbol{X}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right)$

Analytic solution

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

$$\blacktriangleright \mathcal{H}_0: \beta_s = 0.$$

- Can we find an analytic solution for the distribution of the estimate β_{sML} under H₀?
- ▶ Intuition: The estimate is a linear transformation of a Normal distributed variable, namely $\boldsymbol{y} \sim \mathcal{N} \left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I} \right)$, where $\boldsymbol{\beta}$ is the value under \mathcal{H}_0 (with $\beta_s = 0$).

$$\boldsymbol{\flat} \ \boldsymbol{\beta}_{\mathsf{ML}} = \underbrace{\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}}_{\boldsymbol{Y}}\boldsymbol{y}$$

transformation

Equivalent graphical model x_n : regression covariates

$$\boldsymbol{\beta}_{\mathsf{ML}} \sim \mathcal{N}\left(\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{\top}\boldsymbol{I}\boldsymbol{X}\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right)$$

Analytic solution

$$p(\boldsymbol{y} | \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n | \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

$$\mathcal{H}_0: \beta_s = 0.$$

$$\mathcal{\beta}_{\mathsf{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \, \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{X}\right)^{-1}\right)$$

We are only interested in one entry (β_s)
 Use the marginal distribution of β_{sML}.

$$\boldsymbol{eta}_{s\mathsf{ML}}\sim\mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}
ight)^{-1}
ight]_{s,s}
ight),$$

Equivalent graphical model x_n : regression covariates

・ロト・西ト・西ト・日・ 日・ シュウ

Analytic solution

$$p(\boldsymbol{y} | \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n | \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

 $\begin{array}{l} \blacktriangleright \ \, \mathcal{H}_0: \beta_s = 0. \\ \\ \mathcal{B}_{\mathsf{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta} \,, \, \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{X} \right)^{-1} \right) \end{array} \end{array}$

• We are only interested in one entry (β_s)

• Use the marginal distribution of β_{sML} .

$$oldsymbol{eta}_{s\mathsf{ML}}\sim\mathcal{N}\left(0\,,\,\sigma^2\left[\left(oldsymbol{X}^{ op}oldsymbol{X}
ight)^{-1}
ight]_{s,s}
ight),$$

Equivalent graphical model x_n : regression covariates

・ロト・雪・・雪・・雪・・ 白・ ろくの

Analytic solution

$$p(\boldsymbol{y} | \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n | \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

$$\mathcal{H}_0: \beta_s = 0.$$

$$\mathcal{\beta}_{\mathsf{ML}} \sim \mathcal{N}\left(\boldsymbol{\beta}, \, \sigma^2 \left(\boldsymbol{X}^\top \boldsymbol{X}\right)^{-1}\right)$$

- We are only interested in one entry (β_s)
- Use the marginal distribution of β_{sML} .

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(\boldsymbol{0}\,,\,\boldsymbol{\sigma}^2\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{s,s}\right),$$

Equivalent graphical model x_n : regression covariates

$$\boldsymbol{eta}_{s\mathsf{ML}}\sim\mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{ op}\boldsymbol{X}
ight)^{-1}
ight]_{ss}
ight)$$

Now we know the probability distribution of β_s .

But the P value is the probability of observing something at least as extreme.

$$CDF(x) = P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

- For the univariate normal distribution with mean μ and variance σ^2 :

$$\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \, \sigma^{2}\right) \, \mathrm{d}\, y = \frac{1}{2} \left(1 + \mathrm{erf}\left(\frac{1}{2} \frac{x - \mu}{\sqrt{\sigma^{2}}}\right)\right)$$

 $\blacktriangleright \Rightarrow P = 2\min\left(CDF(\beta_{s\mathsf{ML}}), 1 - CDF(\beta_{s\mathsf{ML}})\right)$

$$\boldsymbol{eta}_{s\mathsf{ML}}\sim\mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{ op}\boldsymbol{X}
ight)^{-1}
ight]_{ss}
ight)$$

- Now we know the probability distribution of β_s .
- But the P value is the probability of observing something at least as extreme.

Cumulative distribution function:

$$CDF(x) = P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

For the univariate normal distribution with mean μ and variance σ^2 :

$$\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \, \mathrm{d}\, y = \frac{1}{2} \left(1 + \mathrm{erf}\left(\frac{1}{2} \frac{x - \mu}{\sqrt{\sigma^{2}}}\right)\right)$$

 $\blacktriangleright \Rightarrow P = 2\min\left(CDF(\beta_{s\mathsf{ML}}), 1 - CDF(\beta_{s\mathsf{ML}})\right)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0, \sigma^2 \left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{ss}\right)$$

- Now we know the probability distribution of β_s .
- But the P value is the probability of observing something at least as extreme.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Cumulative distribution function:

$$CDF(x) = P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

For the univariate normal distribution with mean μ and variance σ^2 :

$$\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \, \mathrm{d}\, y = \frac{1}{2} \left(1 + \mathrm{erf}\left(\frac{1}{2} \frac{x - \mu}{\sqrt{\sigma^{2}}}\right)\right)$$

 $\blacktriangleright \Rightarrow P = 2\min\left(CDF(\beta_{s\mathsf{ML}}), 1 - CDF(\beta_{s\mathsf{ML}})\right)$

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0, \sigma^2 \left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{ss}\right)$$

- Now we know the probability distribution of β_s .
- But the P value is the probability of observing something at least as extreme.

Cumulative distribution function:

$$CDF(x) = P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

• For the univariate normal distribution with mean μ and variance σ^2 :

$$\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \, \mathrm{d}y = \frac{1}{2} \left(1 + \mathrm{erf}\left(\frac{1}{2} \frac{x - \mu}{\sqrt{\sigma^{2}}}\right)\right)$$

 $\blacktriangleright \Rightarrow P = 2\min\left(CDF(\beta_{sML}), 1 - CDF(\beta_{sML})\right)$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0, \sigma^2 \left[\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}\right]_{ss}\right)$$

- Now we know the probability distribution of β_s .
- But the P value is the probability of observing something at least as extreme.

Cumulative distribution function:

$$CDF(x) = P(X \le x) = \int_{-\infty}^{x} p(z) dz$$

For the univariate normal distribution with mean μ and variance σ^2 :

$$\int_{-\infty}^{x} \mathcal{N}\left(y \mid \mu, \sigma^{2}\right) \, \mathrm{d}\, y = \frac{1}{2} \left(1 + \mathrm{erf}\left(\frac{1}{2} \frac{x - \mu}{\sqrt{\sigma^{2}}}\right)\right)$$

 $\blacktriangleright \Rightarrow P = 2\min\left(CDF(\beta_{s\mathsf{ML}}), 1 - CDF(\beta_{s\mathsf{ML}})\right)$

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

In practice we have to use an estimate σ
² given the full D-by-1 vector β_{ML}!

$$ar{\sigma_2} = rac{1}{N-D} \left(oldsymbol{y} - oldsymbol{X} oldsymbol{eta}_{\mathrm{ML}}
ight)^{ op} \left(oldsymbol{y} - oldsymbol{X} oldsymbol{eta}_{\mathrm{ML}}
ight)^{ op}$$

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- ► For small samples use t-distribution with v = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1+\frac{z^2}{\nu}\right)^{-\frac{\nu}{2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

• σ^2 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
² given the full D-by-1 vector β_{ML}!

$$\bar{\sigma}_2 = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\text{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\text{ML}} \right)$$

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- ▶ For small samples use t-distribution with v = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1+\frac{z^2}{\nu}\right)^{-\frac{\nu}{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

• σ^2 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma}_2 = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \to \sigma^2$.
- ► For small samples use t-distribution with v = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1+\frac{z^2}{\nu}\right)^{-\frac{\nu}{2}}$$

For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

• σ^2 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma_2} = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- ▶ For small samples use t-distribution with v = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1+\frac{z^2}{\nu}\right)^{-\frac{\nu}{2}}$$

• For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

• σ^2 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma_2} = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $ar{\sigma}^2 o \sigma^2$
- For small samples use t-distribution with ν = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1 + \frac{z^2}{\nu}\right)^{-\frac{\nu}{2}}$$

• For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

•
$$\sigma^2$$
 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma}_2 = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- For small samples use t-distribution with ν = N − D degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1 + \frac{z^2}{\nu}\right)^{-1}$$

For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

•
$$\sigma^2$$
 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma}_2 = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- For small samples use *t*-distribution with $\nu = N D$ degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1 + \frac{z^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$

$$\boldsymbol{\beta}_{s\mathsf{ML}} \sim \mathcal{N}\left(0\,,\,\sigma^{2}\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}\right) \Leftrightarrow z \sim \mathcal{N}\left(0\,,\,1\right), \qquad z = \frac{\boldsymbol{\beta}_{s\mathsf{ML}}}{\sigma\sqrt{\left[\left(\boldsymbol{X}^{\top}\boldsymbol{X}\right)^{-1}\right]_{ss}}}$$

•
$$\sigma^2$$
 is unknown, or a nuisance parameter.

In practice we have to use an estimate σ
₂ given the full D-by-1 vector β_{ML}!

$$\bar{\sigma}_2 = \frac{1}{N-D} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)^{\top} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}_{\mathrm{ML}} \right)$$

Problem:

- Sampling distribution of the test statistic should not depend on nuisance parameters.
- For large samples this is not an issue, as $\bar{\sigma}^2 \rightarrow \sigma^2$.
- For small samples use *t*-distribution with $\nu = N D$ degrees of freedom!

$$t = \frac{z\sigma}{\bar{\sigma}} \sim \Gamma(\frac{\nu+1}{2})\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})\left(1 + \frac{z^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

• For $\nu = +\infty$ *t*-distribution equals $\mathcal{N}(0, 1)$.

Normal distribution

$$x_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

z-score: Standard normal distribution

$$z_n = \frac{\boldsymbol{x}_n - \boldsymbol{\mu}}{\sigma} \sim \mathcal{N}\left(0\,,\,1\right)$$

• Sum of squares of N iid standard normals: χ^2 distribution with N dof

$$\sum_{n=1}^N z_n^2 \sim \chi_N^2$$

Ratio of a standard normal and an independent χ^2_N variable

$$t = \frac{z_1}{\sqrt{\frac{\sum_{n=2}^{N+1} z_n^2}{N}}} \sim \text{Student} - t(N)$$

► Ratio of a \(\chi_{N_1}^2\) and an independent \(\chi_{N_2}^2\): F-distribution with \(N_1\) numerator dof and \(N_2\) denominator dof

$$F = \frac{\sum_{n=1}^{N_1} z_n^2}{\sum_{n=N_1+1}^{N_1+N_2} z_n^2} \sim F(N_1, N_2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Normal distribution

$$x_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

z-score: Standard normal distribution

$$z_n = \frac{\boldsymbol{x}_n - \boldsymbol{\mu}}{\sigma} \sim \mathcal{N}\left(0\,,\,1\right)$$

• Sum of squares of N iid standard normals: χ^2 distribution with N dof

$$\sum_{n=1}^{N} z_n^2 \sim \chi_N^2$$

 \blacktriangleright Ratio of a standard normal and an independent χ^2_N variable

$$t = \frac{z_1}{\sqrt{\frac{\sum_{n=1}^{N+1} z_n^2}{N}}} \sim \text{Student} - t(N)$$

▶ Ratio of a \(\chi_{N_1}^2\) and an independent \(\chi_{N_2}^2\): F-distribution with \(N_1\) numerator dof and \(N_2\) denominator dof

$$F = \frac{\sum_{n=1}^{N_1} z_n^2}{\sum_{n=N_1+1}^{N_1+N_2} z_n^2} \sim F(N_1, N_2)$$

Normal distribution

$$x_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

z-score: Standard normal distribution

$$z_n = \frac{\boldsymbol{x}_n - \boldsymbol{\mu}}{\sigma} \sim \mathcal{N}\left(0\,,\,1\right)$$

• Sum of squares of N iid standard normals: χ^2 distribution with N dof

 \blacktriangleright Ratio of a standard normal and an independent χ^2_N variable

$$t = \frac{z_1}{\sqrt{\frac{\sum_{n=1}^{N+1} z_n^2}{N}}} \sim \text{Student} - t(N)$$

► Ratio of a \(\chi_{N_1}^2\) and an independent \(\chi_{N_2}^2\): F-distribution with \(N_1\) numerator dof and \(N_2\) denominator dof

$$F = \frac{\sum_{n=1}^{N_1} z_n^2}{\sum_{n=N_1+1}^{N_1+N_2} z_n^2} \sim F(N_1, N_2)$$

Normal distribution

$$x_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

z-score: Standard normal distribution

$$z_n = \frac{\boldsymbol{x}_n - \boldsymbol{\mu}}{\sigma} \sim \mathcal{N}\left(0\,,\,1\right)$$

- Sum of squares of N iid standard normals: χ^2 distribution with N dof

$$\sum_{n=1}^{N} z_n^2 \sim \chi_N^2$$

• Ratio of a standard normal and an independent χ^2_N variable

$$t = \frac{z_1}{\sqrt{\frac{\sum_{n=2}^{N+1} z_n^2}{N}}} \sim \text{Student} - t(N)$$

Ratio of a \(\chi_{N_1}^2\) and an independent \(\chi_{N_2}^2\): F-distribution with \(N_1\) numerator dof and \(N_2\) denominator dof

$$F = \frac{\sum_{n=1}^{N_1} z_n^2}{\sum_{n=N_1+1}^{N_1+N_2} z_n^2} \sim F(N_1, N_2)$$

Normal distribution

$$x_n \sim \mathcal{N}\left(\mu, \sigma^2\right)$$

z-score: Standard normal distribution

$$z_n = \frac{\boldsymbol{x}_n - \boldsymbol{\mu}}{\sigma} \sim \mathcal{N}\left(0\,,\,1\right)$$

 \blacktriangleright Sum of squares of N iid standard normals: χ^2 distribution with N dof

$$\sum_{n=1}^{N} z_n^2 \sim \chi_N^2$$

• Ratio of a standard normal and an independent χ^2_N variable

$$t = \frac{z_1}{\sqrt{\frac{\sum_{n=1}^{N+1} z_n^2}{N}}} \sim \text{Student} - t(N)$$

► Ratio of a $\chi^2_{N_1}$ and an independent $\chi^2_{N_2}$: *F*-distribution with N₁ numerator dof and N₂ denominator dof

$$F = \frac{\sum_{n=1}^{N_1} z_n^2}{\sum_{n=N_1+1}^{N_1+N_2} z_n^2} \sim F(N_1, N_2)$$

Testing in Linear Regression Likelihood Ratio Test

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

- Test $\mathcal{H}_0: \beta_s = 0$ (rest don't matter)
- The ratio of the likelihood using the ML estimator and the ML₀
 estimator restricted to H₀ (β_s = 0) is another common test statistic.

Equivalent graphical model

 x_n : regression covariates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

- Test $\mathcal{H}_0: \beta_s = 0$ (rest don't matter)
- The ratio of the likelihood using the ML estimator and the ML₀
 estimator restricted to H₀ (β_s = 0) is another common test statistic.

Equivalent graphical model

 x_n : regression covariates

$$p(\boldsymbol{y} \mid \boldsymbol{X}) = \prod_{n=1}^{N} \mathcal{N}(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}, \sigma^2)$$

- Test $\mathcal{H}_0: \beta_s = 0$ (rest don't matter)
- The ratio of the likelihood using the ML estimator and the ML₀ estimator restricted to H₀ (β_s = 0) is another common test statistic.

$$\frac{\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathsf{ML}}, \sigma_{\mathsf{ML}}^{2}\right)}{\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}_{\mathsf{ML}_{0}}, \sigma_{\mathsf{ML}_{0}}^{2}\right)}$$

Equivalent graphical model

 x_n : regression covariates

Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ₁². (for N → ∞)
- P-value = $1 CDF_{\chi_1^2}(2LR)$.

Equivalent graphical model

 x_n : regression covariates

・ロト・西ト・山田・山田・山市・山口・

Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{LR} = \sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}} +, \sigma_{\mathsf{ML}}^2 \right) \\ - \sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ₁². (for N → ∞)
- P-value = $1 CDF_{\chi_1^2}(2LR)$.

Equivalent graphical model

 x_n : regression covariates

Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{L}\mathsf{R} = \sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}} +, \sigma_{\mathsf{ML}}^2 \right) \\ -\sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

(日)、

э

 Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ₁². (for N → ∞)

• P-value = $1 - CDF_{\chi_1^2}(2LR)$.

Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{LR} = \sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}} +, \sigma_{\mathsf{ML}}^2 \right) \\ -\sum_{n=1}^{N} \log \mathcal{N} \left(y_n \mid \boldsymbol{x}_n \cdot \boldsymbol{\beta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree-of-freedom χ₁². (for N→∞)
- P-value = $1 CDF_{\chi_1^2}(2LR)$.

Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S=10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- Probability of at least 1 type-1 error is 1 − (1 − α)^{S₀} → 1.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S ₀	$S - S_0$

Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- Probability of at least 1 type-1 error is 1 − (1 − α)^{S₀} → 1.

\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

Ho holds

Ho doesn't hold

H.

Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- Probability of at least 1 type-1 error is 1 − (1 − α)^{S₀} → 1.

\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

 \mathcal{H}_0 holds

 \mathcal{H}_0 doesn't hold

Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- Probability of at least 1 type-1 error is 1 − (1 − α)^{S₀} → 1.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- Probability of at least 1 type-1 error is 1 − (1 − α)^{S₀} → 1.

Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- If all tests are independent we would expect 10000 type-1 errors at α = 0.01! (S = S₀)
- ▶ Probability of at least 1 type-1 error is $1 (1 \alpha)^{S_0} \rightarrow 1$.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

- Individual *P*-values < 0.01 are not significant anymore.
- Need to correct for multiple hypothesis testing!

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

 $FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right)$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{g}$ significant.
- Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S0	$S - S_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

 $FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right)$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Domerroni correction: $P_B = P \cdot z$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S0	$S - S_0$

 $FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right)$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{c}$ significant.
- Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
		$S - S_0$

・ロト・西ト・西ト・日・ の々ぐ

 $FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right)$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
		$S - S_0$

 $FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right)$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER $1 (1 \alpha/S)^S$ by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S0	$S - S_0$

くして 前 ふかく 山下 ふゆう ふしゃ

$$FWER = Pr\left(\bigcup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right) \underbrace{\leq}_{\text{Boole's inequality } i \in \mathcal{H}_0} Pr\left(P_{(i)} \le \alpha\right)$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER $1 (1 \alpha/S)^S$ by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

$$\mathrm{FWER} = Pr\left(\cup_{i \in \mathcal{H}_0} P_{(i)} \le \alpha\right) \underbrace{\leq}_{\mathsf{Boole's inequality}} \sum_{i \in \mathcal{H}_0} Pr\left(P_{(i)} \le \alpha\right)$$

$$= \alpha \cdot S_0 \le \alpha \cdot S$$

- Probability of at least one type-2 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER $1 (1 \alpha/S)^S$ by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
		$S - S_0$

- FWER based correction (Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.
- Definition of the FDR:

 $\blacktriangleright \mathbb{E}\left[\frac{FP}{FP+TP}\right]$

▶ Note: this can not be bounded when \mathcal{H}_0 always true (FN + TP = 0). In this case $\mathbb{E}\left[\frac{FP}{FP + TP}\right] = \mathbb{E}\left[\frac{FP}{FP}\right] = 1$

	$ $ \mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

- FWER based correction (Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.

• Definition of the FDR: • $\mathbb{E}\left[\frac{FP}{FP+TP}\right]$

▶ Note: this can not be bounded when \mathcal{H}_0 always true (FN + TP = 0). In this case $\mathbb{E}\left[\frac{FP}{FP + TP}\right] = \mathbb{E}\left[\frac{FP}{FP}\right] = 1$

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- FWER based correction (Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.
- Definition of the FDR:

 $\blacktriangleright \mathbb{E}\left[\frac{FP}{FP+TP}\right]$

▶ Note: this can not be bounded when \mathcal{H}_0 always true (FN + TP = 0). In this case $\mathbb{E}\left[\frac{FP}{FP + TP}\right] = \mathbb{E}\left[\frac{FP}{FP}\right] = 1$

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

- FWER based correction (Bonferroni) leads to very conservative significance thresholds.
- Because of the abundance of tests we might be willing to accept a few false positives.
- Definition of the FDR:

•
$$\mathbb{E}\left[\frac{FP}{FP+TP}\right]$$

▶ Note: this can not be bounded when \mathcal{H}_0 always true (FN + TP = 0). In this case $\mathbb{E}\left[\frac{FP}{FP + TP}\right] = \mathbb{E}\left[\frac{FP}{FP}\right] = 1$

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives
	S_0	$S - S_0$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$ 2. $k = \underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$ 3. Reject all P_s with $P_s < \frac{i}{S} \alpha$

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$ 2. $k = \underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$ 3. Reject all P_s with $P_s < \frac{i}{S} \alpha$

$$\mathrm{FDR}(\alpha = P_{(i)}) = \underbrace{\frac{\mathbb{E}[FP]}{FP + FN}}_{i}$$

1. Sort: $P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$ 2. $k = \underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$ 3. Reject all P_s with $P_s < \frac{i}{\varsigma} \alpha$ $P_{(i)}$

1. Sort:
$$P_{(1)} \leq P_{(2)} \leq \cdots \leq P_{(S)}$$

2. $k = \underset{i}{\operatorname{argmax}} P_{(i)} \leq \frac{i}{S} \alpha$
3. Reject all P_s with $P_s < \frac{i}{S} \alpha$
If tests are independent, then for this procedure:

$$\operatorname{FDR}(\alpha = P_{(i)}) = \underbrace{\frac{\mathbb{E}[FP]}{\underline{FP + FN}}_{i}}_{i} = \frac{S_{0} \cdot \underbrace{P_{\mathcal{H}_{0}} \sim \mathcal{U}[0,1]}_{P_{(k)}}}{i} \leq \frac{S \cdot P_{(k)}}{i}$$

q-values

Definition of a *q*-value:

$$q(P_{(s)}) = \min_{t \geq P_{(s)}} \mathsf{FDR}(t)$$

"minimum FDR that can be attained while calling that feature significant" (Storey and Tibshirani, 2003)

 Using the BH procedure it is possible to transform P values into q-values quite easily

(日)、

э

q-values

Definition of a q-value:

 $q(P_{(s)}) = \min_{t \ge P_{(s)}} \mathsf{FDR}(t)$

"minimum FDR that can be attained while calling that feature significant" (Storey and Tibshirani, 2003)

 Using the BH procedure it is possible to transform P values into q-values quite easily

q-values

Definition of a q-value:

$$q(P_{(s)}) = \min_{t \ge P_{(s)}} \mathsf{FDR}(t)$$

"*minimum FDR that can be attained while calling that feature significant*" (Storey and Tibshirani, 2003)

 Using the BH procedure it is possible to transform P values into q-values quite easily

イロト イポト イヨト イヨト

э

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

Sort test statistics

 Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)

• for example: 2LR vs. χ_1^2

If the plot is close to the diagonal, the distributions match up

 Deviation from the diagonal indicates inflation or deflation of test statistics.

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statistics against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Genomic control (λ_{GC})

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor λ_{GC}.
- Assumption: λ_{GC} should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).
- This procedure yields conservative estimates of the *P*-value distribution null-distribution.

- GC does not make *P*-values uniform, but only matches one quantile!
- Assumption that 50% quantile of *P*-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Genomic control (λ_{GC})

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor λ_{GC}.
- Assumption: λ_{GC} should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).
- This procedure yields conservative estimates of the *P*-value distribution null-distribution.

- GC does not make *P*-values uniform, but only matches one quantile!
- Assumption that 50% quantile of *P*-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Genomic control (λ_{GC})

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor λ_{GC}.
- Assumption: λ_{GC} should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).
- ► This procedure yields conservative estimates of the *P*-value distribution null-distribution.

- GC does not make *P*-values uniform, but only matches one quantile!
- Assumption that 50% quantile of *P*-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Genomic control (λ_{GC})

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor λ_{GC}.
- Assumption: λ_{GC} should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- ► Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).
- This procedure yields conservative estimates of the *P*-value distribution null-distribution.

- GC does not make *P*-values uniform, but only matches one quantile!
- Assumption that 50% quantile of *P*-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs

Genomic control (λ_{GC})

- Ratio of the 50% quantiles between theoretical distribution and test-statistics known as the genomic inflation factor λ_{GC}.
- Assumption: λ_{GC} should be close to 1.
- Estimate degree of inflation (deflation) from this ratio.
- ► Adjust for degree of inflation by dividing all statistics by ratio of the median (50%-quantile).
- This procedure yields conservative estimates of the *P*-value distribution null-distribution.

- GC does not make *P*-values uniform, but only matches one quantile!
- Assumption that 50% quantile of *P*-values is null-only does not need to hold in practice.
- Example: human height with thousands of causal SNPs