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Linear Regression



Regression

Noise model and likelihood

» Given a dataset D = {a:n,yn}n 1, where ¢, = {x,1,...,2yp} is D
dimensional, fit parameters @ of a regressor f with added Gaussian
noise:

Yn = f(20;0) + €, where p(e|o?) =N (e]0,0%).

» Equivalent likelihood formulation:

y’X HN yn’f(wna) 2)

n=1



Regression

Choosing a regressor

» Choose f to be linear:

N
Py X)=T[N (ol 2w B+co?)

n=1

» Consider bias free case, ¢ = 0,
otherwise include an additional
column of ones in each x,,.



Regression

Choosing a regressor

» Choose f to be linear:
N
p(y]X)—l_IlN(yn|wn-,3+c,02) 5 _@
» Consider bias free case, ¢ = 0, @
otherwise include an additional N

column of ones in each x,,.

Equivalent graphical model



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\f(yn | - B,0%)

n=1

N
N 1
= 75111271'02 — 2—2_:

Sum of squares



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\/(yn | - B,0%)

n=1

N
N 1
2751n27r0272—z_: —x, - B)?

/

Sum of squares

» The likelihood is maximized when the squared error is minimized.



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\/(yn | - B,0%)

n=1

N
N 1
2751n27r0272—z_: —x, - B)?

/

Sum of squares

» The likelihood is maximized when the squared error is minimized.

» Least squares and maximum likelihood are equivalent.



Linear Regression and Least Squares

'y yn
y
f(xn. B)
Xn X

(C.M. Bishop, Pattern Recognition and Machine Learning)

N

o1
waming 3 (1, — 2.8

n=1



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d d 1 N
2y _ _ . 2
45 MPW18.7%) = g5 | =55 2 (v~ )
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» Derivative w.r.t a single weight entry 3;



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

1 N

202
n=1

- [01 3 nalyo — @ 5)}

> Set gradient w.r.t. 3 to zero [vector holding the derivatives V4]

d o d
dﬁdlnp(y|ﬁ’a)_d,8d|:

(Yn — xn :8)2:|

Velnp(y|B,0%) =



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d
dBa

> Set gradient w.r.t. 3 to zero [vector holding the derivatives V4]

Vslnp(y|B, o Z Ty, (Yn —@n -B) =0  (where 0 is a vector of Os)



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

d o d 1« 2
d—ﬁdlnp(ylﬁ,a )= d75d {_wn_fyn_mn B) }
1 N
= [Uzzwnd(ynmn ﬁ)}
n=1

> Set gradient w.r.t. 3 to zero [vector holding the derivatives V4]
1
Vslnp(y|B,0°) = — E @, (yn —@n -B) =0  (where 0 is a vector of 0s)
o
n=1

X=X 8)=0

= BMmL =

11 . xlD
» Here, the matrix X is defined as X =

IN1 IND



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry 3;

1 N

202
n=1

- [; 3 nalyo — @ 5)}

> Set gradient w.r.t. 3 to zero [vector holding the derivatives V4]

d o d
ap, mrwlBoT) = 4o {

dBa (Yn — 0 - B) :|

N
1
Vslnp(y|B,0°) = — E @, (yn —@n -B) =0  (where 0 is a vector of 0s)
g
n=1

1
FXT(Z/—X",@) =0
= Bur= (X'X)'X"y
N e’

Pseudo inverse of X

11 . xlD
» Here, the matrix X is defined as X =

IN1 IND



Linear regression

Application: Genome-wide association studies

Given:

EEEEEREEREE.
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Linear regression

Application: Genome-wide association studies

Given:
» Genetics for multiple
individuals
» e.g.. Single nucleotide
polymorphisms (SNPs),
microsatelite markers, ...
» Quantitative phenotype for
the same individuals
> e.g.: height,
gene-expression, ...

Goal:

» Try to find genetic markers,
that explain the variance in
the phenotype.

I

I %Ii 1%
15 50 60 10 50 15 10 60 10 60
EEEEEENRE

HHH

20 0 10 0 10 200 10 0 10 20

Position (Mb)

4 B 5 S RG
1.8 20 22 2.4 2.6 28 3.0
Position on chromosome 3 (Mb)



Linear regression

Application: Genome-wide association studies

Given:
» Genetics for multiple pAD 4 - A4 b1
individuals 50 15 15 50 60 10 50 15 10 60 10 60
> e.g.: Single nucleotide . EEEEEEEEEEE:
polymorphisms (SNPs), fFfffIffifzEifg
microsatelite markers, ... f £ :t:£:f:£:¢:¢
» Quantitative phenotype for 1@
the same individuals e
» e-g-: height’ 10 20 0 10 gos“i:}:(Mg)OO 10 0 10 20
gene-expression, ... b, T
Goal: ot

» Try to find genetic markers,
that explain the variance in
the phenotype.

» Use linear regression!

Position on chromosome 3 (Mb)



Genetics 101

Some definitions

Genotype

Phenotype
A: dominant/a:

> Genotype x denotes the genetic state of rocessive

comrs *e
AR

)

Z

2;%

/)

Phenotype

» Denoted by x,,. for individual n. A and a codominant



Genetics 101

Some definitions

» Genotype x denotes the genetic state of
an individual.

» Denoted by x,,. for individual n.

» Phenotype denotes the state of a trait of
an individual.

» Denoted by y,, for individual n.

Genotype

Phenotype
A: dominant/a:
recessive

Phenotype
Aand a codominant

X
X




Genetics 101

Some definitions

» Genotype x denotes the genetic state of
an individual.

» Denoted by x,,. for individual n.

» Phenotype denotes the state of a trait of
an individual.

» Denoted by y,, for individual n.

> A Locus is a position or limited region in
the genome.

» Denoted by x for locus (or SNP) s

Genotype Aa aa

Phenotype
A: dominant/a:
recessive

ll 5 !l A\l §

™

Phenotype \ S@ |
\

A and a codominant

Allele for purple flowers

Alele for white flowers.



Genetics 101

Some definitions

» Genotype x denotes the genetic state of
an individual.

» Denoted by x,,. for individual n.

» Phenotype denotes the state of a trait of
an individual.

» Denoted by y,, for individual n.

> A Locus is a position or limited region in
the genome.

» Denoted by x; for locus (or SNP) s.

> An allele is the genetic state of a locus.

Genotype Aa aa

AA
‘D
Phenotype Q|
A: dominant/a: d A\GY
recessive \ @
Q
A \\;\:\ {
( “{iﬁ*

Allele for purple flowers

Phenotype
Aand a codominant




Genetics 101

More definitions

» An organism/cell is haploid if it only has
one chromosome set or identical
chromosome sets.

> e.g. A. thaliana, sperm cells or inbred
lab strains
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Genetics 101

More definitions

» An organism/cell is haploid if it only has
one chromosome set or identical
chromosome sets.

> e.g. A. thaliana, sperm cells or inbred
lab strains

> An organism/cell is diploid if it has two
separately inherited homologous
chromosomes.

> e.g. human
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Genetics 101

More definitions

» An organism/cell is haploid if it only has
one chromosome set or identical
chromosome sets.

> e.g. A. thaliana, sperm cells or inbred
lab strains

> An organism/cell is diploid if it has two
separately inherited homologous
chromosomes.

> e.g. human

> An organism/cell is polyploid if it has more
than two homologous chromosomes.

> e.g. sugar cane is hexaploid.
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Even more definitions

» Haplotype denotes an individual's state of
a single set of chromosomes (paternal or
maternal).

Tree 1

Tree 2

Tree 3

SNP

o+~
@@
CIC]
aa
EXC|
CIC]
L d

ACGTG
ACGTG

aQ
EIC]
aa

@ Q

aa
HH
@ Q
EIC]
aa
@ Q
@@
HH

A
A
ACGTGTCEYGT
ACGTGTCEYGT

aa

ERC|

HH

L

CTETA
eE T

A

Maternal chrom
Paternal chrom.

Maternal chrom.
Paternal chrom.

Maternal chrom.
Paternal chrom.



Even more definitions

» Haplotype denotes an individual's state of
a single set of chromosomes (paternal or
maternal).

> A locus s is heterozygous if it differs
between paternal and maternal haplotypes.

> heterozygous allele usually encoded as
T, =1

Tree 1

Tree 2

Tree 3
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Even more definitions

» Haplotype denotes an individual's state of
a single set of chromosomes (paternal or
maternal).

> A locus s is heterozygous if it differs
between paternal and maternal haplotypes.

> heterozygous allele usually encoded as
T, =1

> A locus is homozygous if it matches
between paternal and maternal haplotypes.

» homozygous major allele usually
encoded as x4 =0

» homozygous minor allele usually
encoded as ¢, = 2

g
3

|
Tee1 ACGTGTCBoT
acercerTcilerT
teez BCceTeTcllerT
aAceTGeTCfde T

ACGTGTCEYGT
ACGTGTCEYGT

Tree 3
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Maternal chrom
Paternal chrom.
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Even more definitions

» Haplotype denotes an individual's state of
a single set of chromosomes (paternal or
maternal).

> A locus s is heterozygous if it differs
between paternal and maternal haplotypes.

> heterozygous allele usually encoded as
T, =1

> A locus is homozygous if it matches
between paternal and maternal haplotypes.

» homozygous major allele usually
encoded as x4 =0

» homozygous minor allele usually
encoded as ¢, = 2

» 1,, counts the number of minor alleles
(mutations) at SNP s.

Tree 1

Tree 2

Tree 3

El
aa

ACGTG
ACGTGT

@ Q
HH
@ Q
EIC]
aa

ACGTGTC
ACGTGTC

SNP
}

@@
CIC]
EXC|
CIC]
L d

aa

@@
HH
aa
ERC|
HH
L

Maternal chrom
Paternal chrom.

Maternal chrom.
Paternal chrom.

Maternal chrom.
Paternal chrom.



Linear regression

Example: Genome-wide association study

» Model the phenotype of
individual n as a linear function
of the SNP z,,5

> T,s € 0,1,2 counts the number
of mutations that individual n
has at the position s.

Yn = xnsﬁ + €
—— ~—

genetic effect  noise

oy,

°

/m

A

(C.M. Bishop, Pattern Recognition and Machine Learning)

+
Xn X



Genome-wide association study

Flowering time in A. thaliana

Arabidopsis thaliana
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» Grows under rough conditions
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Flowering time in A. thaliana

Arabidopsis thaliana

» Grows under rough conditions

» Distributed over the whole globe
(it "travels” far)

» Genetics model organism
(“lab rat” among plants)

» Mostly self-fertilizing
(mostly homozygous)




Genome-wide association study

Flowering time in A. thaliana

Arabidopsis thaliana

» Grows under rough conditions

v

Distributed over the whole globe
(it "travels” far)

» Genetics model organism

(“lab rat” among plants)

v

Mostly self-fertilizing
(mostly homozygous)

v

Model for flowering




Genome-wide association study

Flowering time in A. thaliana

GWAS data [Atwell et al. Nat. Gen. 2010]

> y: Phenotype:
“Flowering time at 10° Celsius (days)”
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214,553 SNPs, all homozygous




Genome-wide association study

Flowering time in A. thaliana

GWAS data [Atwell et al. Nat. Gen. 2010]

> y: Phenotype:
“Flowering time at 10° Celsius (days)”

» X: Genotype:
214,553 SNPs, all homozygous

> 194 samples




Genome-wide association study

Flowering time in A. thaliana

GWAS data [Atwell et al. Nat. Gen. 2010]

> y: Phenotype:
“Flowering time at 10° Celsius (days)”

» X: Genotype:
214,553 SNPs, all homozygous

> 194 samples

» show demo.
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Gaussian distribution



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

N
TN (zn | pin, o)

n=1



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

HN Tn | pn s 05) =H

n=1 n=1

exp | — = (0 — n)?
271'02 P " 20 2 ~ bn



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

N N 1 1
2 2
| IN(xn | s Un) anzllTU%eXP {—ﬁ(wn — pn) }

= (27r)7% (H ai) exp l:; 2052(:&1 - un)2:|

n=1



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

N N 1 1
2 2
| IN(xn | s Un) anzllTU%eXP {—ﬁ(wn — pn) }

n=1

where we introduced ¥ = , T = and p =

. .
0] on TN nN



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

TIA (o L a2) =TT oy on0 |- oo — 0]
n=1 n=1 271-0-% 20”
N N _% 1 N
~e? (I1) w3 o]
n=1 n=1

o? 0 @ H1
where we introduced ¥ = , T = : and p =
0] 0'?\] TN nN

> Special case: all z,, are also identically distributed with mean p and variance o

N
p(ml,...,xN):HN(xn\,u,c72):./\f(a:\u.1,a2.1)

n=1



Gaussian distribution

Univariate vs. multivariate

» The joint distribution of N samples z,, from independent univariate normal
distributions with means p,, and variances o2 Vn € [1,..., N] is given as

N N 1 1
2 2
| IN(xn | s Un) anzllTU%eXP {—ﬁ(wn — Hn) }

n=1
o [N -3 L&
B _N 2 —2 2
=(2m)" 2 (}1 Un) exp |:2 n§:1 on (T — fin) :|

where we introduced ¥ = - , T = : and p =
0] on TN nN

» Special case: all z,, are also identically distributed with mean p and variance o?
N
p(z1,...,TN) = HN(xn | 02) =N(z|p-1, 02-1)
n=1

» From now on we'll mostly argue about multivariate normal distributions.



Distributions of sums and means

» Throw a dice N times.

» Distribution of the sum?



Distributions of sums and means

n=1 n=4
v 5
018 ——5 0
0.16} 0.
0.14) 0.
0.12| 0 731645
0.10} 0.
0.08 0.
0.05 0.
0.04} 0.
0.02} 0.
0.00 123456 k o 4 - 14 24
» Throw a dice N times. n=2 n=5
i — ;
T o T o

» Distribution of the sum? ot 0
o1z 0 D
0.08 0.
0.05 0.
0.04} 0.
0.02} 0.02}
000N k000 5 718

n=3

o
0.
0.
0 178
0.12]
0.10|
0.08|
0.05
0.04f
0.02}
0.00"




Distributions of sums and means

» Throw a dice N times.
» Distribution of the sum?

> Independent samples from a uniform
distribution on the interval (0,1).

» Distribution of the mean?

0.16|

731648

65/648

1718 30k

coox

0.12|
0.10f
0.08|
0.05|

0.02|
0.00!




Distributions of sums and means

» Throw a dice N times.
» Distribution of the sum?

> Independent samples from a uniform
distribution on the interval (0,1).

» Distribution of the mean?

0.16|
0.14f
0.12|
0.10f
0.08|
0.05|

0.02|
0.00!

731648

0.14|
0.12|
0.10f
0.08|
0.05|

0.02|
0.00!

65/648

1718

0 0.5

1 (C.M. Bishop, Pattern Recognition

and Machine Learning)
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> Given N independent, identically distributed (i.i.d.) samples from P(z):
Ti,T2,...,TN, let ™) be the sample mean

VN (:E(N) - /J,)



Central limit theorem

> x, ~ P(x), unknown distribution with mean p and covariance X¥.

> Given N independent, identically distributed (i.i.d.) samples from P(z):
Ti,T2,...,TN, let ™) be the sample mean

) v (5 () )

—0(a.s.)
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Central limit theorem

> x, ~ P(x), unknown distribution with mean p and covariance X¥.

> Given N independent, identically distributed (i.i.d.) samples from P(z):
Ti,T2,...,TN, let ™) be the sample mean

e () o
—0(a.s.)

- P (\/N (:?:(N) - u)) 4 N(0, 3)

» Only mean and covariance retained when averaging i.i.d. variables.
» Distribution becomes Gaussian

» Gaussian is a “limit distribution”
Implication: Once something is Gaussian it usually stays Gaussian under many
operations

» Normal distribution is closed under linear transformation
marginalization, conditioning.



Gaussian distribution

Linear transformation
For any random variable & with mean E [z] and covariance C [z]

> E[Axz + b] = AE [x] + b; (linearity of expectation)

E[Az +b] = Y (Az + b)p(x (Za}p
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Gaussian distribution

Linear transformation
For any random variable & with mean E [z] and covariance C [z]

> E[Axz + b] = AE [x] + b; (linearity of expectation)

E[Az +b] = Y (Az + b)p(x (Za}p )

reX

» C[Axz] = AC[z] AT
ClAz] =E [Aa:mTAT] — E[Ax]E[Az]"

—A (E[mmT} _E[z]E [m]T) AT
= AC[z] AT

» Gaussian distribution only has mean and covariance

z~N(p, X)
:>y:Am+b~N(A;L+b,AEAT)




Marginal distribution of a Gaussian

Independent case
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=[] on=[7 4]

Given a Gaussian distributed random variable = { } with mean and covariance



Marginal distribution of a Gaussian

Independent case

Given a Gaussian distributed random variable = { il } with mean and covariance
2
| Elz] _ o 0
Elx] = [ E[z2] ] Clel = { 0 o2

> What is p(z1)?

2
_ T 1251 g1 0 N

p(xl)_/wN([mz]l{uz}’[O ag})dm_
=/N(ml|,u1,(7%)./\/'(x1|,u1,a%)dx2:

ZN(ml |,u1,af)/ N(Jcl |u1,a§)dx2:
2

1

=N (z1 | p1,0%)



Marginal distribution of a Gaussian

Independent case

Given a Gaussian distributed random variable & = { !

}, with mean and covariance
X2

=[], =[]

02

> What is p(z1)?
2
o (2 D[] [F 3]
=/ N (x| pa, ot )N (21 | pr, 0f )das =

ZN(ml |,u1,af)/ N(Jcl |u1,a§)dx2:
2

1

=N (z1 | p1,0%)

> observation: The marginal distribution is Gaussian (Closure property!)



Marginal distribution of a Gaussian

Multivariate case

-
Given a (N1 + N2)-dimensional Gaussian distributed random variable = [m]—, w;}
with mean and covariance

E[z] = [ Elx:] } . Cla]= [ C[(C[acl] Clay, 2] }

E[x2] X1, @a] " Clx2]

A




Marginal distribution of a Gaussian

Multivariate case

-
Given a (N1 + N2)-dimensional Gaussian distributed random variable = [mf,w;] .
with mean and covariance

Sel=[ g} | C= | cpprmyr o ]

> What is p(z1)? (2 Ni-dimensional)

A
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with mean and covariance
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» Can we find a linear transformation A, such that
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Marginal distribution of a Gaussian

Multivariate case

-
Given a (N1 + N2)-dimensional Gaussian distributed random variable = [m]—,w;] .
with mean and covariance

=[] ). e[ ol %]

> What is p(z1)? (2 Ni-dimensional)

» Can we find a linear transformation A, such that

Ax = x1?
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Marginal distribution of a Gaussian

Multivariate case

-
Given a (N1 + N2)-dimensional Gaussian distributed random variable = [mf,w;] .
with mean and covariance

Elx] = [ Ela] } . Cla]= [ C[C[ml] Cl1, 2] }

E[x2] X1, @a] " Clx2]

> What is p(z1)? (2 Ni-dimensional)

» Can we find a linear transformation A, such that

Ax =217
A=[In 0] | &
p(Az) = ( z | AE[z], AC[z]AT ) | p
( .

z1 | E[z1], Clz1])

> Attention: Dimensionality of the distribution is now
N7, instead of N!
If we used formula for N-dimensional normal
distribution, then the distribution is not normalized!
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covariance C[z]

N
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N
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Sum of Gaussian distributed variables

Given a N-dimensional Gaussian distributed random variable @, with mean E[z] and
covariance C[z]

N
» What is p <Z 1’”> ?

n=1
N
» Can we find a linear transformation A, such that Ax = an?

A=1y=[1,...,1]
p(Az) :N(lm | 1nE[z], 1N(C[a:]1;)

N(an \ ZE[xn ZZan,xm>

n=1m=1
> Attention: Dimensionality of the dlstrlbutlon is now 1, instead of N!
If we used formula for N-dimensional normal distribution, then the distribution is
not normalized!
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Whitening in a Gaussian distribution

Univariate case

» Given a univariate Gaussian distribution with arbitrary mean p and variance o?
2
z~N(p, 0%)
» Can | find a linear transformation y = ax + b, such that the resulting distribution

has unit variance and zero mean?

- 1
y~N(@O,1) & y=""H o a== b=
g g

SHRS

» Useful: Many statistical software packages only
consider implement statistical tests standard
normal distribution A/(0, 1).
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Whitening in a Gaussian distribution

Multivariate case

> Given a multivariate Gaussian distribution with arbitrary mean p and covariance X
N(z|p, X)

> Can | find a linear transformation f(x) = Ax + p, such that the resulting
distribution has unit covariance I and zero mean?

> Matrix square-root of X'

1

A=X"2, b=3X g

N(y o, 2—%22—%)
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Matrix square root

A matrix B'/? is called matrix square-root of a N-by-N symmetric matrix B iff
BI/QBT/Q — B.

Examples of matrix square roots:

> Cholesky factor L(triangular matrix)

» Cholesky factorization of B: B = LL",

» Computational complexity: O(N?).

» The Cholesky factorization is only available for positive definite
matrices.

> Symmetric matrix square-root UA'/?U " (unique),
» U orthogonal matrix. The columns are the eigenvectors of B

UU'=U'U=1
» A =diag[\,..., A\y] diagonal matrix of eigenvalues A,,.

» Computational complexity: O(N?)

B=UA?’U U AYV*UT
N——
I

» = AU is also a matrix square root! (non-symmetric)
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Matrix square root

Application: Sampling from a multivariate Gaussian distribution

>

We often need samples from a multivariate Gaussian distribution (For example:
MCMC sampling)

Sampling from a univariate Gaussian distribution is easy.

x~N(0,1)

How can we use N samples from a univariate Gaussian to imitate a single sample
from a multivariate Gaussian with covariance X7

wNN(“’» X)

Use matrix square 3'/2 root of the covariance matrix to transform the samples!

Algorithm:

1.

S0k wN

Compute a square root of X' (e.g. from Cholesky decomposition)
Get N samples z,, from a standard normal distribution A/(0, 1)
Stack the samples into a vector © = [z1,...,2N]

Multiply & by X'/2

Add p.

done.
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