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Regression
Noise model and likelihood

I Given a dataset D = {xn, yn}Nn=1, where xn = {xn,1, . . . , xn,D} is D
dimensional, fit parameters θ of a regressor f with added Gaussian
noise:

yn = f(xn;θ) + εn where p(ε |σ2) = N
(
ε | 0, σ2

)
.

I Equivalent likelihood formulation:

p(y |X) =
N∏

n=1

N
(
yn | f(xn;θ), σ

2
)



Regression
Choosing a regressor

I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn | xn · β + c, σ2

)
I Consider bias free case, c = 0,

otherwise include an additional
column of ones in each xn.
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Linear Regression
Maximum likelihood

I Taking the logarithm, we obtain

ln p(y |θσ2) =
N∑

n=1

lnN
(
yn | xn · β, σ2

)
= −N

2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn − xn · β)2︸ ︷︷ ︸
Sum of squares

I The likelihood is maximized when the squared error is minimized.

I Least squares and maximum likelihood are equivalent.
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Linear Regression and Least Squares

y

x

f (xn , )

yn

xn

� 

(C.M. Bishop, Pattern Recognition and Machine Learning)

argminβ
1

2

N∑
n=1

(yn − xn · β)2



Linear Regression and Least Squares

I Derivative w.r.t a single weight entry βi

d

dβd
ln p(y |β, σ2) =

d

dβd

[
− 1

2σ2

N∑
n=1

(yn − xn · β)2
]

=

[
− 1

σ2

N∑
n=1

xnd(yn − xn · β)

]

I Set gradient w.r.t. β to zero [vector holding the derivatives ∀βd]

∇β ln p(y |β, σ2) =

1

σ2

N∑
n=1

x>n (yn − xn · β) = 0 (where 0 is a vector of 0s)

1

σ2
X>(y −X · β) = 0

=⇒ βML = (X>X)−1X>︸ ︷︷ ︸
Pseudo inverse of X

y

I Here, the matrix X is defined as X =

 x11 . . . x1D
. . . . . . . . .
xN1 . . . xND


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Linear regression
Application: Genome-wide association studies

Given:
I Genetics for multiple

individuals
I e.g.: Single nucleotide

polymorphisms (SNPs),
microsatelite markers, ...

I Quantitative phenotype for
the same individuals

I e.g.: height,
gene-expression, ...

Goal:

I Try to find genetic markers,
that explain the variance in
the phenotype.

I Use linear regression!

study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.

50 60 40 50 40 10 5 15 10 15 560

X

F1 generation

Subpopulation 1!!!!! Subpopulation 2

F2 generation

50 15 15 50 60 10 50 15 10 60 10 60

Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
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I Denoted by xs for locus (or SNP) s.

I An allele is the genetic state of a locus.
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I Haplotype denotes an individual’s state of
a single set of chromosomes (paternal or
maternal).

I A locus s is heterozygous if it differs
between paternal and maternal haplotypes.

I heterozygous allele usually encoded as
xs = 1

I A locus is homozygous if it matches
between paternal and maternal haplotypes.

I homozygous major allele usually
encoded as xs = 0

I homozygous minor allele usually
encoded as xs = 2

I xns counts the number of minor alleles
(mutations) at SNP s.
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Linear regression
Example: Genome-wide association study

I Model the phenotype of
individual n as a linear function
of the SNP xns

I xns ∈ 0, 1, 2 counts the number
of mutations that individual n
has at the position s.

yn = xnsβ︸︷︷︸
genetic effect

+ εn︸︷︷︸
noise

y

x

f (xn , )

yn

xn

� 

(C.M. Bishop, Pattern Recognition and Machine Learning)
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I Grows under rough conditions

I Distributed over the whole globe
(it “travels” far)
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(“lab rat” among plants)

I Mostly self-fertilizing
(mostly homozygous)

I Model for flowering
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Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)

=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.

I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =
N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)
=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.

I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =
N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)
=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.

I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =
N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)
=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.
I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =
N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)
=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.
I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =

N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Gaussian distribution
Univariate vs. multivariate

I The joint distribution of N samples xn from independent univariate normal
distributions with means µn and variances σ2

n ∀n ∈ [1, . . . , N ] is given as

N∏
n=1

N
(
xn | µn , σ2

n

)
=

N∏
n=1

1√
2πσ2

n

exp

[
− 1

2σ2
n

(xn − µn)2
]

= (2π)−
N
2

(
N∏
n=1

σ2
n

)− 1
2

exp

[
−1

2

N∑
n=1

σ−2
n (xn − µn)2

]

= (2π)−
N
2 |Σ |−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
,

where we introduced Σ =

 σ
2
1 0

. . .

0 σ
2
N

, x =

 x1
.
.
.
xN

 and µ =

 µ1

.

.

.
µN

.
I Special case: all xn are also identically distributed with mean µ and variance σ2

p(x1, . . . , xN ) =

N∏
n=1

N
(
xn | µ , σ2 ) = N

(
x | µ · 1 , σ2 · I

)
I From now on we’ll mostly argue about multivariate normal distributions.



Distributions of sums and means

I Throw a dice N times.

I Distribution of the sum?

I Independent samples from a uniform

distribution on the interval (0,1).

I Distribution of the mean?

n = 1
p(k)
0.18
0.16
0.14
0.12
0.10
0.08
0.05
0.04
0.02
0.00

k123456

1 / 6

n = 2
p(k)
0.18
0.16
0.14
0.12
0.10
0.08
0.05
0.04
0.02
0.00

k2 127

1 / 6

n = 3
p(k)
0.18
0.16
0.14
0.12
0.10
0.08
0.05
0.04
0.02
0.00

k3 1810,11

1 / 8

n = 4
p(k)
0.18
0.16
0.14
0.12
0.10
0.08
0.05
0.04
0.02
0.00

k4 2414

73 / 648

n = 5
p(k)
0.18
0.16
0.14
0.12
0.10
0.08
0.05
0.04
0.02
0.00

k5 3017,18

65 / 648

(C.M. Bishop, Pattern Recognition

and Machine Learning)
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Central limit theorem

I xn ∼ P (x), unknown distribution with mean µ and covariance Σ .

I Given N independent, identically distributed (i.i.d.) samples from P (x):

x1,x2, . . . ,xN , let x̄(N) be the sample mean

√
N
(
x̄(N) − µ

)
=
√
N

(
1

N

(
N∑
n=1

xn

)
− µ

)
︸ ︷︷ ︸

→0(a.s.)

⇒ P
(√

N
(
x̄(N) − µ

))
d−→ N (0,Σ)

I Only mean and covariance retained when averaging i.i.d. variables.

I Distribution becomes Gaussian

I Gaussian is a “limit distribution”

Implication: Once something is Gaussian it usually stays Gaussian under many

operations

I Normal distribution is closed under linear transformation
marginalization, conditioning.
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Gaussian distribution
Linear transformation
For any random variable x with mean E [x] and covariance C [x]

I E [Ax+ b] = AE [x] + b; (linearity of expectation)

E [Ax+ b] =
∑
x∈X

(Ax+ b)p(x) = A

(∑
x∈X

xp(x)

)
︸ ︷︷ ︸

E[x]

+b

I C [Ax] = AC [x]A>

C [Ax] = E
[
Axx>A>

]
− E [Ax]E [Ax]>

= A
(
E[xx>]− E [x]E [x]>

)
A>

= AC [x]A>

I Gaussian distribution only has mean and covariance

x ∼ N (µ , Σ)

⇒y = Ax+ b ∼ N
(
Aµ+ b , AΣA>

)
−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Σ =
1 0.8
0.8 1
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Marginal distribution of a Gaussian
Independent case

Given a Gaussian distributed random variable x =

[
x1
x2

]
, with mean and covariance

E[x] =

[
E[x1]
E[x2]

]
, C[x] =

[
σ2
1 0

0 σ2
2

]

I What is p(x1)?

p(x1) =

∫
x2

N
([

x1

x2

]
|
[
µ1

µ2

]
,

[
σ2
1 0

0 σ2
2

])
dx2 =

=

∫
x2

N
(
x1 | µ1 , σ

2
1

)
N
(
x1 | µ1 , σ

2
1

)
dx2 =

= N
(
x1 | µ1 , σ

2
1

) ∫
x2

N
(
x1 | µ1 , σ

2
1

)
dx2︸ ︷︷ ︸

1

=

= N
(
x1 | µ1 , σ

2
1

)
I observation: The marginal distribution is Gaussian (Closure property!)
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Marginal distribution of a Gaussian
Multivariate case

Given a (N1 +N2)-dimensional Gaussian distributed random variable x =
[
x>1 ,x

>
2

]>
,

with mean and covariance

E[x] =

[
E[x1]
E[x2]

]
, C[x] =

[
C[x1] C[x1,x2]

C[x1,x2]> C[x2]

]

I What is p(x1)? (x2 N1-dimensional)

I Can we find a linear transformation A, such that
Ax = x1?

A =
[
IN1 0

]
p(Ax) =N

(
Ax | AE[x] , AC[x]A>

)
=N (x1 | E[x1] , C[x1] )

I Attention: Dimensionality of the distribution is now
N1, instead of N !
If we used formula for N -dimensional normal
distribution, then the distribution is not normalized!
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Sum of Gaussian distributed variables

Given a N -dimensional Gaussian distributed random variable x, with mean E[x] and
covariance C[x]

I What is p

(
N∑
n=1

xn

)
?

I Can we find a linear transformation A, such that Ax =
N∑
n=1

xn?

A = 1N = [1, . . . , 1]

p(Ax) = N
(
1x | 1NE[x] , 1NC[x]1>N

)
= N

(
N∑
n=1

xn |
N∑
n=1

E[xn] ,

N∑
n=1

N∑
m=1

C[xn , xm]

)

I Attention: Dimensionality of the distribution is now 1, instead of N !
If we used formula for N -dimensional normal distribution, then the distribution is
not normalized!
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Whitening in a Gaussian distribution
Univariate case

I Given a univariate Gaussian distribution with arbitrary mean µ and variance σ2

x ∼ N
(
µ , σ2)

I Can I find a linear transformation y = ax+ b, such that the resulting distribution
has unit variance and zero mean?

y ∼ N (0 , 1) ⇔

y =
x− µ
σ

⇔ a =
1

σ
, b =

µ

σ
.

I Useful: Many statistical software packages only
consider implement statistical tests standard
normal distribution N (0 , 1).
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Whitening in a Gaussian distribution
Multivariate case

I Given a multivariate Gaussian distribution with arbitrary mean µ and covariance Σ

N (x | µ , Σ )

I Can I find a linear transformation f(x) = Ax+ µ, such that the resulting
distribution has unit covariance I and zero mean?

I Matrix square-root of Σ−1:

A = Σ−
1
2 , b = Σ−

1
2µ

N
(
y | 0 , Σ−

1
2ΣΣ−

>
2

)
Σ =

1 0.8
0.8 1

1 0
1 1

 

Σ−
1
2

→
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Matrix square root
A matrix B1/2 is called matrix square-root of a N -by-N symmetric matrix B iff

B1/2B>/2 = B.

Examples of matrix square roots:

I Cholesky factor L(triangular matrix)

I Cholesky factorization of B : B = LL>,
I Computational complexity: O(N3).
I The Cholesky factorization is only available for positive definite

matrices.

I Symmetric matrix square-root UΛ1/2U> (unique),

I U orthogonal matrix. The columns are the eigenvectors of B

UU> = U>U = I

I Λ = diag[λ1, . . . , λN ] diagonal matrix of eigenvalues λn.
I Computational complexity: O(N3)

B = UΛ1/2U>U︸ ︷︷ ︸
I

Λ1/2U>

I ⇒ Λ1/2U> is also a matrix square root! (non-symmetric)
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Matrix square root
Application: Sampling from a multivariate Gaussian distribution

I We often need samples from a multivariate Gaussian distribution (For example:
MCMC sampling)

I Sampling from a univariate Gaussian distribution is easy.

x ∼ N (0 , 1)

I How can we use N samples from a univariate Gaussian to imitate a single sample
from a multivariate Gaussian with covariance Σ?

x ∼ N (µ , Σ)

I Use matrix square Σ1/2 root of the covariance matrix to transform the samples!

I Algorithm:

1. Compute a square root of Σ (e.g. from Cholesky decomposition)
2. Get N samples xn from a standard normal distribution N (0 , 1)
3. Stack the samples into a vector x = [x1, . . . , xN ]

4. Multiply x by Σ1/2

5. Add µ.
6. done.
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