Machine Learning and Statistics

 in Genetics and GenomicsI: Course Overview and Introduction to Probability Theory

Christoph Lippert

Microsoft Research
eScience group

Research
Los Angeles, USA

Current topics in computational biology
UCLA
Winter quarter 2014

Why probabilistic modeling?

- Inferences from data are intrinsically uncertain.

Probability theory: model uncertainty instead of ignoring it! Applications are not limited to statistical genetics: Machine Learning, Data Mining, Pattern Recognition, etc. Goal of this part of the course

- Overview on probabilistic modeling
- Key concepts
- Focus on Applications in statistical genetics

Why probabilistic modeling?

- Inferences from data are intrinsically uncertain.
- Probability theory: model uncertainty instead of ignoring it!
- Applications are not limited to statistical genetics: Machine Learning, Data Mining, Pattern Recognition, etc.

Why probabilistic modeling?

- Inferences from data are intrinsically uncertain.
- Probability theory: model uncertainty instead of ignoring it!
- Applications are not limited to statistical genetics: Machine Learning, Data Mining, Pattern Recognition, etc.
- Goal of this part of the course
- Overview on probabilistic modeling
- Key concepts
- Focus on Applications in statistical genetics

Why probabilistic modeling? Example

- Genes measured in yeast

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2 ?
probability theory
This course: linear models
(and kernel method's)

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2?
- Probabilistic models \rightarrow probability theory
- Is this dependence significant?

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
\square

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
- Statistical testing

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
- Statistical testing
- Can I predict the level of gene2 observing gene1?

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2 ?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
- Statistical testing
- Can I predict the level of gene2 observing gene1?
- Take known covariates into account

Estimate hidden covariates/confounders

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2 ?
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
- Statistical testing
- Can I predict the level of gene2 observing gene1?
- Take known covariates into account

Estimate hidden covariates/confounders

Why probabilistic modeling? Example

- Genes measured in yeast
- e.g. Is gene 1 co-expressed with gene 2 ?
- Take known covariates into account
- Estimate hidden covariates/confounders
- Probabilistic models \rightarrow probability theory
- This course: linear models (and kernel methods)

$$
\text { gene }_{2}=c+\text { gene }_{1} \cdot \beta+\epsilon
$$

- Is this dependence significant?
- Statistical testing
- Can I predict the level of gene2 observing gene1?

Why probabilistic modeling?

Example: Genome-wide association studies

Given:

Why probabilistic modeling?

Example: Genome-wide association studies

Given:

- Genetics for multiple individuals
- e.g.: Single nucleotide polymorphisms (SNPs), microsatelite markers, ...

Why probabilistic modeling?

Example: Genome-wide association studies

Given:

- Genetics for multiple individuals
- e.g.: Single nucleotide polymorphisms (SNPs), microsatelite markers, ...

- Phenotypes for the same individuals
- e.g.: disease, height, gene-expression, ...
- Try to find genetic markers, that explain the variance in the phenotype.

Why probabilistic modeling?

Example: Genome-wide association studies

Given:

- Genetics for multiple individuals
- e.g.: Single nucleotide polymorphisms (SNPs), microsatelite markers, ...

- Phenotypes for the same individuals
- e.g.: disease, height, gene-expression, ...

Goal:
Tyy to ind genetic marees
that explain the variance in
the phenotype.

Why probabilistic modeling?

Example: Genome-wide association studies

Given:

- Genetics for multiple individuals
- e.g.: Single nucleotide polymorphisms (SNPs), microsatelite markers, ...
- Phenotypes for the same individuals
- e.g.: disease, height, gene-expression, ...

Goal:

- Try to find genetic markers, that explain the variance in the phenotype.

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

*Oxford Dictionary of Statistics

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

- Direct association

*Oxford Dictionary of Statistics

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

- Direct association

*Oxford Dictionary of Statistics

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

- Direct association
- Indirect association
* Oxford Dictionary of Statistics

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

- Direct association
- Indirect association
- Can be beneficial e.g.: Linkage

*Oxford Dictionary of Statistics

Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any relationship between two measured quantities that renders them statistically dependent.*

- Direct association
- Indirect association
- Can be beneficial e.g.: Linkage
- Can be harmful e.g.: Population structure *Oxford Dictionary of Statistics

Further reading, useful material

- Christopher M. Bishop: Pattern Recognition and Machine learning.
- Good background, covers most of the machine learning used in this course and much more!
- Substantial parts of this tutorial borrow figures and ideas from this book.
- David J.C. MacKay: Information Theory, Learning and Inference
- Very worthwhile reading, not quite the same quality of overlap with the lecture synopsis.
- Freely available online.

Course structure

```
* Probability Theory
    - Rules of probabilit
        calculus
    - Distributions
I inear models (statistics)
    * Linear regression
    - Parameter estimations
    - Statistical testing
    * Regularization (ridge,
        Lasso)
    - Random effects models
    * Linear mixed models
```


Course structure

- Probability Theory
- Rules of probability calculus
- Distributions

Course structure

- Probability Theory
- Rules of probability calculus
- Distributions
- Linear models (statistics)
- Linear regression
- Parameter estimations
- Statistical testing
- Regularization (ridge, Lasso)
- Random effects models
- Linear mixed models

Course structure

- Probability Theory
- Rules of probability calculus
- Distributions
- Linear models (statistics)
- Linear regression
- Parameter estimations
- Statistical testing
- Regularization (ridge, Lasso)
- Random effects models
- Linear mixed models
- Latent variable models
- Principle components analysis (PCA)
- Mixture models

Course structure

- Probability Theory
- Rules of probability calculus
- Distributions
- Linear models (statistics)
- Linear regression
- Parameter estimations
- Statistical testing
- Regularization (ridge, Lasso)
- Random effects models
- Linear mixed models
- Latent variable models
- Principle components analysis (PCA)
- Mixture models
- Kernel methods
- Introduction to kernels
- Non-parametric regression (Gaussian Process)
- Non-linear PCA models (kernel PCA, GPLVM)
- Multivariate regression

Course Overview

```
Probability Theory
    Review of probabilities
    Random variables
    Information and Entropy
    Normal distribution
        Parameter estimation for the normal distribution
```

Bayesian inference for the Gaussian
Linear Regression
Summary

Outline

Outline

Course Overview

Probability Theory

Review of probabilities
Random variables
Information and Entropy
Normal distribution
Parameter estimation for the normal distribution

Bayesian inference for the Gaussian

Linear Regression

Summary

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

踽比

- experiment
- pick a box and
then take a ball at random
- sample space Ω

(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and
- experiment then take a ball at random
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball at random
- $\Omega=$ $\{R G, R O, B G, B O\}$
- event Subsets of Ω

(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball at random
- $\Omega=$ $\{R G, R O, B G, B O\}$
- $A=$ $\{R G, R O\}$, $B=\{R O, B O\}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball at random \quad coin flip
- $\Omega=$ $\{R G, R O, B G, B O\}$
- $A=$ $\{R G, R O\}$, $B=\{R O, B O\}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball
- experiment
- sample space Ω,
$P(\Omega)=1$
at random \quad coin flip
- $\Omega=>\Omega=\{H, T\}$
- event

Subsets of Ω

- $A=$
$\{R G, R O\}$,
$B=\{R O, B O\}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and
- experiment
- sample space Ω,
$P(\Omega)=1$ then take a ball at random \quad coin flip
- $\Omega=>\Omega=\{H, T\}$ $\{R G, R O, B G, B O\} \quad A=\{H\}$,
- $A=\quad B=\{T\}$

$$
\begin{aligned}
& \{R G, R O\} \\
& B=\{R O, B O\}
\end{aligned}
$$

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and
- experiment
- sample space Ω, $P(\Omega)=1$ then take a ball at random coin flip
- $\Omega=>\Omega=\{H, T\}$ $\{R G, R O, B G, B O\} \quad A=\{H\}$,
- $A=\quad B=\{T\}$

Subsets of Ω

$$
\begin{aligned}
& \{R G, R O\} \\
& B=\{R O, B O\}
\end{aligned}
$$

- gene expression measurement
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball
- experiment
- sample space Ω, $P(\Omega)=1$
- event

Subsets of Ω
at random \quad coin flip

- $\Omega=>\Omega=\{H, T\}$
$\{R G, R O, B G, B O\} \quad A=\{H\}$,
- $A=\quad B=\{T\}$

$$
\begin{aligned}
& \{R G, R O\} \\
& B=\{R O, B O\}
\end{aligned}
$$

- gene expression measurement
- $\Omega=]-\infty, \infty[$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probabilities

- Probabilities describe likeliness of the outcomes of an experiment

- pick a box and then take a ball
- experiment
- sample space Ω, $P(\Omega)=1$
- event

Subsets of Ω
at random \quad coin flip

- $\Omega=>\Omega=\{H, T\}$
$\{R G, R O, B G, B O\} \quad A=\{H\}$,
- $A=\quad B=\{T\}$

$$
\begin{aligned}
& \{R G, R O\} \\
& B=\{R O, B O\}
\end{aligned}
$$

- gene expression measurement
- $\Omega=]-\infty, \infty[$
- $A=]-\infty, 3]$,
$B=\{2\}$
(C.M. Bishop, Pattern Recognition and Machine Learning)

Probability function

- Probability functions are non-negative, $P(A) \geq 0$ (intersection)
- Pobabilities sum to 1 over union of all possible disjoint events $A_{1} \cup A_{2} \cup$

Probability function

- Probability functions are non-negative, $P(A) \geq 0$
- If A and B are disjoint
- $P(A \cup B)=P(A)+P(B)$ (union)
- $P(A \cap B)=0$ (intersection)

Probability function

- Probability functions are non-negative, $P(A) \geq 0$
- If A and B are disjoint
- $P(A \cup B)=P(A)+P(B)$ (union)
- $P(A \cap B)=0$ (intersection)
- Probabilities sum to 1 over union of all possible disjoint events $A_{1} \cup A_{2} \cup \ldots$

Probability function

- Probability functions are non-negative, $P(A) \geq 0$
- If A and B are disjoint
- $P(A \cup B)=P(A)+P(B)$ (union)
- $P(A \cap B)=0$ (intersection)

- Probabilities sum to 1 over union of all possible disjoint events $A_{1} \cup A_{2} \cup \ldots$
- $P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots=P(\Omega)=1$

Intersection and Union

- Intersection $A \cap B$

$$
\begin{aligned}
& P(A \cap B) \\
= & P(A)+P(B)-P(A \cup B)
\end{aligned}
$$

Intersection and Union

- Intersection $A \cap B$

$$
\begin{aligned}
& P(A \cap B) \\
= & P(A)+P(B)-P(A \cup B)
\end{aligned}
$$

- Union $A \cup B$

$$
\begin{aligned}
& P(A \cup B) \\
= & P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

Complement and DeMorgan's Laws

- The complement of A is denoted by A^{c}
- $\Omega^{c}=\emptyset$

$$
\begin{array}{r}
P\left(A^{c}\right)=1-P(A) \\
P\left(A \cap A^{c}\right)=0 \\
P\left(A \cup A^{c}\right)=1
\end{array}
$$

Complement and DeMorgan's Laws

- The complement of A is denoted by A^{c}
- $\Omega^{c}=\emptyset$

$$
\begin{array}{r}
P\left(A^{c}\right)=1-P(A) \\
P\left(A \cap A^{c}\right)=0 \\
P\left(A \cup A^{c}\right)=1
\end{array}
$$

- DeMorgan's Laws:
- $(A \cup B)^{c}=A^{c} \cap B^{c}$

Complement and DeMorgan's Laws

- The complement of A is denoted by A^{c}
- $\Omega^{c}=\emptyset$

$$
\begin{array}{r}
P\left(A^{c}\right)=1-P(A) \\
P\left(A \cap A^{c}\right)=0 \\
P\left(A \cup A^{c}\right)=1
\end{array}
$$

- DeMorgan's Laws:
- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- $(A \cap B)^{c}=A^{c} \cup B^{c}$

Events

- If A is a subset of B
- $A \cup B=B$
- $P(A \cup B)=P(B)$
- $A \cap B=A$
- $P(A \cap B)=P(A)$

Products of sample spaces

- Typically we don't perform only a single experiment

Products of sample spaces

- Typically we don't perform only a single experiment
- Repeated experiments
- Flip a coin N times
- Measure a phenotype at different time points
- Multiple experiments
- Measure expression of multiple genes Sample space is product of sample spaces
> number of elements

Products of sample spaces

- Typically we don't perform only a single experiment
- Repeated experiments
- Flip a coin N times
- Measure a phenotype at different time points
- Multiple experiments
- Measure expression of multiple genes

Products of sample spaces

- Typically we don't perform only a single experiment
- Repeated experiments
- Flip a coin N times
- Measure a phenotype at different time points
- Multiple experiments
- Measure expression of multiple genes
- Sample space is product of sample spaces
- $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{N}$
- number of elements multiply

Products of sample spaces

- Typically we don't perform only a single experiment
- Repeated experiments
- Flip a coin N times
- Measure a phenotype at different time points
- Multiple experiments
- Measure expression of multiple genes
- Sample space is product of sample spaces
- $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{N}$
- number of elements multiply
- Experiments can be independent
- Flip a coin twice
- $P(H, H)=P(H)^{2}$

Products of sample spaces

- Typically we don't perform only a single experiment
- Repeated experiments
- Flip a coin N times
- Measure a phenotype at different time points
- Multiple experiments
- Measure expression of multiple genes
- Sample space is product of sample spaces
- $\Omega=\Omega_{1} \times \Omega_{2} \times \cdots \times \Omega_{N}$
- number of elements multiply
- Experiments can be independent
- Flip a coin twice
- $P(H, H)=P(H)^{2}$
- or dependent
- Dependence of measurements over time
- Two genes that are co-regulated
- $P\left(g_{1}=x, g_{2}=y\right) \neq$ $P\left(g_{1}=x\right) \cdot P\left(g_{2}=y\right)$

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
> dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

(C.M. Bishop, Pattern Recognition and Machine

Learning)

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

$$
\begin{aligned}
& P(A \cap B)=P \\
& \text { (Product rule) }
\end{aligned}
$$

Conditional probability

- Some times occurrence of one event yields information about another one
- disjoint events
- subsets
- dependent measurements

- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- $P(A \cap B)=P(A \mid B) \cdot P(B)$ (Product rule)

Independence

- The three following statements are equivalent and imply independence of A and B :
- $P(A \mid B)=P(A)$,
- $P(B \mid A)=P(B)$,
- $P(A \cap B)=P(A) \cdot P(B)$.

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete)

$$
\mathcal{X}=\mathbb{N}_{0}^{+}
$$

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete)

$$
\mathcal{X}=\mathbb{N}_{0}^{+}
$$

- Number of H coin flips before first T (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete)

$$
\mathcal{X}=\mathbb{N}_{0}^{+}
$$

- Number of H coin flips before first T (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Sum of two dice rolls (discrete) $\mathcal{X}=\{2,3, \ldots, 12\}$

- Average gene-expression measurement over samples (continuous)

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete)

$$
\mathcal{X}=\mathbb{N}_{0}^{+}
$$

- Number of H coin flips before first T (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Sum of two dice rolls (discrete) $\mathcal{X}=\{2,3, \ldots, 12\}$
- Gene expression at time t (continuous) $\mathcal{X}=\mathbb{R}$

- Average gene-expression measurement over samples (continuous)

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Number of H coin flips before first T (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Sum of two dice rolls (discrete) $\mathcal{X}=\{2,3, \ldots, 12\}$
- Gene expression at time t (continuous) $\mathcal{X}=\mathbb{R}$

- Average gene-expression measurement over N samples (continuous) $\mathcal{X}=\mathbb{R}$

Random variables

- Alternatively to defining sets of events we can define random variables of interest.
- A random variables X is defined over a set of possible values \mathcal{X}
- Number of orange balls in N trials (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Number of H coin flips before first T (discrete) $\mathcal{X}=\mathbb{N}_{0}^{+}$
- Sum of two dice rolls (discrete) $\mathcal{X}=\{2,3, \ldots, 12\}$
- Gene expression at time t (continuous) $\mathcal{X}=\mathbb{R}$

- Average gene-expression measurement over N samples (continuous) $\mathcal{X}=\mathbb{R}$

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the
 probability that X takes value x, short $p(x)$.

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the probability that X takes value x, short $p(x)$.
- Probability mass function (discrete)

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the probability that X takes value x, short $p(x)$.
- Probability mass function (discrete)
- Probability density function (continuous)

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the probability that X takes value x, short $p(x)$.
- Probability mass function (discrete)
- Probability density function (continuous)
- Probabilities are non-negative,

$$
P(X=x) \geq 0
$$

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the probability that X takes value x, short $p(x)$.
- Probability mass function (discrete)
- Probability density function (continuous)
- Probabilities are non-negative,

$$
P(X=x) \geq 0
$$

- Probabilities sum to one

Probabilities and random variables

- Let X be a random variable, defined over a set \mathcal{X} or measurable space.
- $P(X=x)$ denotes the probability that X takes value x, short $p(x)$.
- Probability mass function (discrete)
- Probability density function (continuous)
- Probabilities are non-negative, $P(X=x) \geq 0$
- Probabilities sum to one

$$
\sum_{x \in \mathcal{X}} p(x)=1
$$

$$
\int_{x \in \mathcal{X}} p(x) \mathrm{d} x=1
$$

Expected values and variances

Moments
Expected value

- Average value of the random variable X

Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$

Expected values and variances

Moments
Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$

Expected values and variances

Moments
Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$

Expected values and variances

Moments
Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

Expected values and variances

Moments
Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments
Expected value
Variance σ^{2}

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments
Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments

Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

Variance σ^{2}

- Measures average squared deviation fror the mean of X.
- sample variance of a data sample drawn from $p(x)$.

$$
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{X}\right)^{2}
$$

Expected values and variances

Moments

Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

Variance σ^{2}

- Measures average squared deviation fror the mean of X.
- sample variance of a data sample drawn from $p(x)$.

$$
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{X}\right)^{2}
$$

- Second centralized moment of X
- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments

Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

Variance σ^{2}

- Measures average squared deviation fror the mean of X.
- sample variance of a data sample drawn from $p(x)$.

$$
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{X}\right)^{2}
$$

- Second centralized moment of X
- square of the standard deviation σ
- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments

Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

Variance σ^{2}

- Measures average squared deviation fror the mean of X.
- sample variance of a data sample drawn from $p(x)$.

$$
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{X}\right)^{2}
$$

- Second centralized moment of X
- square of the standard deviation σ
- discrete

$$
\sigma^{2}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x \in \mathcal{X}}(x-
$$

- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Expected values and variances

Moments

Expected value

- Average value of the random variable X
- sample mean \bar{X} of a data sample drawn from $p(x)$.

$$
\bar{X}=\frac{1}{N} \sum_{n=1}^{N} x_{n}
$$

- Expected value $\mathbb{E}[X]$ is the first moment of $P(X)$
- discrete

$$
\mathbb{E}[X]=\sum_{x \in \mathcal{X}} x \cdot p(x)
$$

- continuous

$$
\mathbb{E}[X]=\int_{x \in \mathcal{X}} x \cdot p(x) \mathrm{d} x
$$

Variance σ^{2}

- Measures average squared deviation fror the mean of X.
- sample variance of a data sample drawn from $p(x)$.

$$
\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{X}\right)^{2}
$$

- Second centralized moment of X
- square of the standard deviation σ
- discrete

$$
\sigma^{2}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\sum_{x \in \mathcal{X}}(x-
$$

- continuous

$$
\sigma^{2}(X)=\int_{x \in \mathcal{X}}(x-\mathbb{E}[X])^{2} \cdot p(x) \mathrm{d} x
$$

Distributions of multiple random variables

Marginal Probability

$$
P\left(X=x_{i}\right)=\frac{c_{i}}{N}
$$

Conditional Probability
Joint Probability

$$
P\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}
$$

$$
P\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
$$

Distributions of multiple random variables

Marginal Probability

$$
P\left(X=x_{i}\right)=\frac{c_{i}}{N}
$$

Conditional Probability

Product Rule

$$
\begin{gathered}
P\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
\quad=P\left(Y=y_{j} \mid X=x_{i}\right) P\left(X=x_{i}\right)
\end{gathered}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$
P\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}
$$

Distributions of multiple random variables

Sum Rule

Product Rule

$$
\begin{gathered}
P\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}=\frac{n_{i j}}{c_{i}} \cdot \frac{c_{i}}{N} \\
\quad=P\left(Y=y_{j} \mid X=x_{i}\right) P\left(X=x_{i}\right)
\end{gathered}
$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.
- These conditions are fulfilled by the entropy function:

$$
H(X)=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
$$

- Entropy is a vector-valued function (input is a probability distribution)

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.
- These conditions are fulfilled by the entropy function:

$$
H(X)=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
$$

- Entropy is a vector-valued function (input is a probability distribution)

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.
- These conditions are fulfilled by the entropy function:

$$
H(X)=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
$$

- Entropy is a vector-valued function (input is a probability distribution)

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.
- These conditions are fulfilled by the entropy function:

$$
H(X)=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
$$

- Entropy is a vector-valued function (input is a probability distribution)

Information and Entropy

- Information is the reduction of uncertainty.
- Entropy $H(X)$ is the quantitative description of uncertainty
- $H(X)=0$: certainty about X .
- $H(X)$ maximal if all possibilities are equal probable.
- Uncertainty and information are additive.
- These conditions are fulfilled by the entropy function:

$$
H(X)=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
$$

- Entropy is a vector-valued function (input is a probability distribution)

Definitions related to entropy and information

- Entropy is the average surprise

$$
H(X)=\sum_{x \in \mathcal{X}} P(X=x) \underbrace{(-\log P(X=x))}_{\text {surprise }}
$$

Definitions related to entropy and information

- Entropy is the average surprise

$$
H(X)=\sum_{x \in \mathcal{X}} P(X=x) \underbrace{(-\log P(X=x))}_{\text {surprise }}
$$

- Conditional entropy of X given $Y=y$

$$
H(X \mid Y=y)=-\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log P(X=x \mid Y=y)
$$

- Conditional entropy of X given Y is the average (over Y) conditional entropy of X given $Y=u$

Definitions related to entropy and information

- Entropy is the average surprise

$$
H(X)=\sum_{x \in \mathcal{X}} P(X=x) \underbrace{(-\log P(X=x))}_{\text {surprise }}
$$

- Conditional entropy of X given $Y=y$

$$
H(X \mid Y=y)=-\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log P(X=x \mid Y=y)
$$

- Conditional entropy of X given Y is the average (over Y) conditional entropy of X given $Y=y$

$$
H(X \mid Y)=\sum_{y \in \mathcal{Y}} P(Y=y)\left(-\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log P(X=x \mid Y=y)\right)
$$

Definitions related to entropy and information

- Entropy is the average surprise

$$
H(X)=\sum_{x \in \mathcal{X}} P(X=x) \underbrace{(-\log P(X=x))}_{\text {surprise }}
$$

- Conditional entropy of X given $Y=y$

$$
H(X \mid Y=y)=-\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log P(X=x \mid Y=y)
$$

- Conditional entropy of X given Y is the average (over Y) conditional entropy of X given $Y=y$

$$
\begin{aligned}
H(X \mid Y) & =\sum_{y \in \mathcal{Y}} P(Y=y)\left(-\sum_{x \in \mathcal{X}} P(X=x \mid Y=y) \log P(X=x \mid Y=y)\right) \\
& =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x, Y=y) \log P(X=x \mid Y=y)
\end{aligned}
$$

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Mutual information

$$
I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Mutual information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Mutual information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- $I(X ; Y)=I(Y ; X)$

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Mutual information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- $I(X ; Y)=I(Y ; X)$
- average reduction in uncertainty about X when learning value of Y (and vice versa)

Definitions related to entropy and information

- Chain rule

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

- Mutual information

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

- $I(X ; Y)=I(Y ; X)$
- average reduction in uncertainty about X when learning value of Y (and vice versa)

Definitions related to entropy and information

Independence of X and Y

- Under independence of X and $Y, p(x, y)=p(x) p(y)$.

Definitions related to entropy and information

Independence of X and Y

- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y))
$$

Definitions related to entropy and information

Independence of X and Y

- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y
\end{aligned}
$$

Definitions related to entropy and information

Independence of X and Y

- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y \\
= & -\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)-\sum_{y \in \mathcal{Y}} P(Y=y) \log P(Y=y)
\end{aligned}
$$

Definitions related to entropy and information

 Independence of X and Y- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y
\end{aligned}
$$

$$
=-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)-\sum_{y \in \mathcal{Y}} P(Y=y) \log P(Y=y)
$$

- $I(X ; Y)=H(X)+H(Y)-\underbrace{H(X, Y)}_{H(X)+H(Y)}=0$

Definitions related to entropy and information

Independence of X and Y

- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y \\
= & -\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)-\sum_{y \in \mathcal{Y}} P(Y=y) \log P(Y=y)
\end{aligned}
$$

- $I(X ; Y)=H(X)+H(Y)-\underbrace{H(X, Y)}_{H(X)+H(Y)}=0$
- $H(X \mid Y)=H(X)$

Definitions related to entropy and information

 Independence of X and Y- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y \\
= & -\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)-\sum_{y \in \mathcal{Y}} P(Y=y) \log P(Y=y)
\end{aligned}
$$

- $I(X ; Y)=H(X)+H(Y)-\underbrace{H(X, Y)}_{H(X)+H(Y)}=0$
- $H(X \mid Y)=H(X)$

$$
H(X \mid Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log \underbrace{P(X=x \mid Y=y)}_{P(X=x)}
$$

Definitions related to entropy and information

 Independence of X and Y- Under independence of X and $Y, p(x, y)=p(x) p(y)$.
- $H(X, Y)=H(X)+H(Y)$

$$
\begin{aligned}
& H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log (P(X=x) P(Y=y)) \\
= & -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log P(X=x)+P(X=x) P(Y=y) \log P(Y=y \\
= & -\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)-\sum_{y \in \mathcal{Y}} P(Y=y) \log P(Y=y)
\end{aligned}
$$

- $I(X ; Y)=H(X)+H(Y)-\underbrace{H(X, Y)}_{H(X)+H(Y)}=0$
- $H(X \mid Y)=H(X)$

$$
\begin{aligned}
H(X \mid Y) & =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} P(X=x) P(Y=y) \log \underbrace{P(X=x \mid Y=y)}_{P(X=x)} \\
& =-\sum_{x \in \mathcal{X}} P(X=x) \log P(X=x)
\end{aligned}
$$

Entropy in action

The optimal weighing problem

- Given 12 balls, all equal except for one that is lighter or heavier.
- What is the ideal weighting strategy and how many weighings are needed to identify the odd ball and tell if it is lighter or heavier?

Kulback-Leibler divergence

- For two probability distributions over $X, P(X)$ and $Q(X)$, the KL divergence (or relative Entropy) is defined as

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(X=x) \log \frac{P(X=x)}{Q(Y=y)}
$$

Kulback-Leibler divergence

- For two probability distributions over $X, P(X)$ and $Q(X)$, the KL divergence (or relative Entropy) is defined as

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(X=x) \log \frac{P(X=x)}{Q(Y=y)}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)

Kulback-Leibler divergence

- For two probability distributions over $X, P(X)$ and $Q(X)$, the KL divergence (or relative Entropy) is defined as

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(X=x) \log \frac{P(X=x)}{Q(Y=y)}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)
- $D_{K L}(P, \| Q)$ is strictly convex.

Kulback-Leibler divergence

Definition of convexity:

- $f(x)$ is convex over interval (a, b), if $\forall x_{1}, x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1$
- For two probability distributions over $X, P(X)$ and $Q(X)$, the KL divergence (or relative Entropy) is defined as

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(X=x) \log \frac{P(X=x)}{Q(Y=y)}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)
- $D_{K L}(P, \| Q)$ is strictly convex.

$$
\begin{array}{r}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \\
\leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{array}
$$

(D. MacKay, Information Theory, Inference, and Learning Algorithms)

Kulback-Leibler divergence

Definition of convexity:

- $f(x)$ is convex over interval (a, b), if $\forall x_{1}, x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1$

$$
\begin{array}{r}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \\
\leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{array}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)
- $D_{K L}(P, \| Q)$ is strictly convex.
- $D_{K L}(P \| Q) \geq 0 \quad$ (Gibb's inequality)

(D. MacKay, Information Theory, Inference, and Learning Algorithms)

Kulback-Leibler divergence

Definition of convexity:

- $f(x)$ is convex over interval (a, b), if $\forall x_{1}, x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1$

$$
\begin{array}{r}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \\
\leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{array}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)
- $D_{K L}(P, \| Q)$ is strictly convex.
- $D_{K L}(P \| Q) \geq 0 \quad$ (Gibb's inequality)
- $D_{K L}(P \| Q)=0$ if and only if $P=Q$.

(D. MacKay, Information Theory, Inference, and Learning Algorithms)

Kulback-Leibler divergence

Definition of convexity:

- For two probability distributions over $X, P(X)$ and $Q(X)$, the KL divergence (or relative Entropy) is defined as

$$
D_{K L}(P \| Q)=\sum_{x \in \mathcal{X}} P(X=x) \log \frac{P(X=x)}{Q(Y=y)}
$$

- $f(x)$ is convex over interval (a, b), if $\forall x_{1}, x_{2} \in(a, b)$ and $0 \leq \lambda \leq 1$

$$
\begin{array}{r}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \\
\leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
\end{array}
$$

- $D_{K L}(P, \| Q) \neq D_{K L}(Q\| \| P)$ (not symmetric)
- $D_{K L}(P, \| Q)$ is strictly convex.
- $D_{K L}(P \| Q) \geq 0 \quad$ (Gibb's inequality)
- $D_{K L}(P \| Q)=0$ if and only if $P=Q$.
- KL divergence will be useful as scoring function for approximations Q of probability distributions P that are intractable.

(D. MacKay, Information Theory, Inference, and Learning Algorithms)

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=
$$

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\quad e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Multivariate normal distribution
- data term

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Multivariate normal distribution
- data term

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Multivariate normal distribution

$$
p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

$$
=
$$

- data term normalization constant

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Multivariate normal distribution

$$
\begin{aligned}
& p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
& \quad=\quad \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]
\end{aligned}
$$

- data term normalization constant

Probability distributions

- Normal distribution (Gaussian distribution)

$$
p\left(x \mid \mu, \sigma^{2}\right)=\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Multivariate normal distribution

$$
\begin{aligned}
& p(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})=\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \\
& \quad=\frac{1}{\sqrt{|2 \pi \boldsymbol{\Sigma}|}} \cdot \exp \left[-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right]
\end{aligned}
$$

- data term normalization constant

Probability distributions

continued...

- Bernoulli

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

Probability distributions

continued...

- Bernoulli

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

- Gamma

$$
p(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}
$$

Probability distributions

The Gaussian revisited

- Gaussian PDF

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Positive: $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)>0$
- Normalized: $\int_{-\infty}^{+\infty} \mathcal{N}(x \mid \mu, \sigma) \mathrm{d} x=1$ (check)

Probability distributions

The Gaussian revisited

- Gaussian PDF

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Positive: $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)>0$
- Normalized: $\int_{-\infty}^{+\infty} \mathcal{N}(x \mid \mu, \sigma) \mathrm{d} x=1$ (check)
- Expectation:

$$
<x>=\int_{-\infty}^{+\infty} \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) x \mathrm{~d} x=\mu
$$

- Variance: $\operatorname{Var}[x]=\left\langle x^{2}>-\langle x\rangle^{2}\right.$
$=\mu^{2}+\sigma^{2}-\mu^{2}=\sigma^{2}$

Inference for the normal distribution

Ingredients

- Data sampled from unknown
distribution $p\left(\mathcal{D} \mid \theta_{0}\right)$

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}
$$

Inference for the normal distribution

Ingredients

- Data sampled from unknown distribution $p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)$

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\} \sim p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)
$$

Inference for the normal distribution

Ingredients

- Data sampled from unknown distribution $p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)$

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\} \sim p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)
$$

- Model $\mathcal{H}_{\text {Gauss }}$ - normal PDF

$$
\begin{aligned}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \\
\boldsymbol{\theta} & =\left\{\mu, \sigma^{2}\right\}
\end{aligned}
$$

Inference for the normal distribution

Ingredients

- Data sampled from unknown distribution $p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)$

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\} \sim p\left(\mathcal{D} \mid \boldsymbol{\theta}_{0}\right)
$$

- Model $\mathcal{H}_{\text {Gauss }}$ - normal PDF

$$
\begin{aligned}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \\
\boldsymbol{\theta} & =\left\{\mu, \sigma^{2}\right\}
\end{aligned}
$$

- Likelihood

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$
p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

Inference for the normal distribution

Maximum likelihood

- Likelihood

$$
p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

(C.M. Bishop, Pattern Recognition and Machine

```
Learning)
```


Inference for the normal distribution

Maximum likelihood

- Likelihood

$$
p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

(C.M. Bishop, Pattern Recognition and Machine

Inference for the normal distribution

Maximum likelihood

- Likelihood

$$
p(\mathcal{D} \mid \boldsymbol{\theta})=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} p(\mathcal{D} \mid \boldsymbol{\theta})
$$

(C.M. Bishop, Pattern Recognition and Machine

Learning)

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)$:

$$
\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)$:

$$
\begin{aligned}
& \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \\
= & \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
\end{aligned}
$$

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)$:

$$
\begin{aligned}
& \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \\
= & \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
\end{aligned}
$$

- Equivalently maximize the log-Likelihood $\log p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\mathcal{L}\left(\mu, \sigma^{2}\right)$

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)$:

$$
\begin{aligned}
& \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \\
= & \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
\end{aligned}
$$

- Equivalently maximize the log-Likelihood $\log p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\mathcal{L}\left(\mu, \sigma^{2}\right)$

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N} \log \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

Maximum likelihood estimation in the normal distribution

- Data sample \mathcal{D} of size N modeled by a univariate normal distribution
- Likelihood of the data under the model $p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)$:

$$
\begin{aligned}
& \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \\
= & \prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \cdot e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
\end{aligned}
$$

- Equivalently maximize the log-Likelihood $\log p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\mathcal{L}\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
& \mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N} \log \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \\
= & \sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
\end{aligned}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{aligned}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right) & =0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu} & =0
\end{aligned}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :
$\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=$
- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :

$$
\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N} \frac{1}{2 \sigma^{4}}\left(x_{n}-\mu\right)^{2}
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :

$$
\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N} \frac{1}{2 \sigma^{4}}\left(x_{n}-\mu\right)^{2}
$$

- set to zero and solve for $\hat{\sigma}^{2}$:

$$
-\frac{N}{2 \hat{\sigma}^{2}}+\sum_{n=1}^{N} \frac{1}{2 \hat{\sigma}^{4}}\left(x_{n}-\hat{\mu}\right)^{2}=0
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :

$$
\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N} \frac{1}{2 \sigma^{4}}\left(x_{n}-\mu\right)^{2}
$$

- set to zero and solve for $\hat{\sigma}^{2}$:

$$
\begin{array}{r}
-\frac{N}{2 \hat{\sigma}^{2}}+\sum_{n=1}^{N} \frac{1}{2 \hat{\sigma}^{4}}\left(x_{n}-\hat{\mu}\right)^{2}=0 \\
\frac{N \hat{\sigma}^{2}}{2}=\sum_{n=1}^{N} \frac{1}{2}\left(x_{n}-\hat{\mu}\right)^{2}
\end{array}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :

$$
\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N} \frac{1}{2 \sigma^{4}}\left(x_{n}-\mu\right)^{2}
$$

- set to zero and solve for $\hat{\sigma}^{2}$:

$$
\begin{array}{r}
-\frac{N}{2 \hat{\sigma}^{2}}+\sum_{n=1}^{N} \frac{1}{2 \hat{\sigma}^{4}}\left(x_{n}-\hat{\mu}\right)^{2}=0 \\
\frac{N \hat{\sigma}^{2}}{2}=\sum_{n=1}^{N} \frac{1}{2}\left(x_{n}-\hat{\mu}\right)^{2} \\
\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
\end{array}
$$

Maximum likelihood estimation in the normal distribution

$$
\mathcal{L}\left(\mu, \sigma^{2}\right)=\sum_{n=1}^{N}-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}
$$

- Take the derivative of $\mathcal{L}\left(\mu, \sigma^{2}\right)$ with respect to μ :

$$
\frac{\partial \mathcal{L}\left(\mu, \sigma^{2}\right)}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\mu\right)
$$

- set to zero and solve for $\hat{\mu}$:

$$
\begin{array}{r}
-\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)=0 \\
-\frac{1}{\sigma^{2}}\left(\sum_{n=1}^{N} x_{n}\right)+\frac{N}{\sigma^{2}} \hat{\mu}=0 \\
\hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad \text { sample mean }
\end{array}
$$

- Take the derivative of $\mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)$ with respect to σ^{2} :

$$
\frac{\partial \mathcal{L}\left(\hat{\mu}, \sigma^{2}\right)}{\partial \sigma^{2}}=-\frac{N}{2 \sigma^{2}}+\sum_{n=1}^{N} \frac{1}{2 \sigma^{4}}\left(x_{n}-\mu\right)^{2}
$$

- set to zero and solve for $\hat{\sigma}^{2}$:

$$
\begin{array}{r}
-\frac{N}{2 \hat{\sigma}^{2}}+\sum_{n=1}^{N} \frac{1}{2 \hat{\sigma}^{4}}\left(x_{n}-\hat{\mu}\right)^{2}=0 \\
\frac{N \hat{\sigma}^{2}}{2}=\sum_{n=1}^{N} \frac{1}{2}\left(x_{n}-\hat{\mu}\right)^{2}
\end{array}
$$

$\hat{\sigma}^{2}=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2} \quad$ sample variance

Inference for the Gaussian

Maximum likelihood

- Maximum likelihood solutions

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
\end{aligned}
$$

Equivalent to common mean and variance estimators (almost).

Inference for the Gaussian

Maximum likelihood

- Maximum likelihood solutions

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
\end{aligned}
$$

Equivalent to common mean and variance estimators (almost).

- Maximum likelihood ignores parameter uncertainty
- Think of the ML solution for a single observed datapoint x_{1}

$$
\begin{aligned}
\hat{\mu} & =x_{1} \\
\hat{\sigma}^{2} & =\left(x_{1}-\hat{\mu}\right)^{2}=0
\end{aligned}
$$

- How about Bayesian inference?

Inference for the Gaussian

Maximum likelihood

- Maximum likelihood solutions

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\hat{\sigma}^{2} & =\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\hat{\mu}\right)^{2}
\end{aligned}
$$

Equivalent to common mean and variance estimators (almost).

- Maximum likelihood ignores parameter uncertainty
- Think of the ML solution for a single observed datapoint x_{1}

$$
\begin{aligned}
\hat{\mu} & =x_{1} \\
\hat{\sigma}^{2} & =\left(x_{1}-\hat{\mu}\right)^{2}=0
\end{aligned}
$$

- How about Bayesian inference?

Outline

Course Overview

Probability Theory
Review of probabilities
Random variables
Information and Entropy
Normal distribution
Parameter estimation for the normal distribution

Bayesian inference for the Gaussian

Linear Regression

Summary

The Rules of Probability

Sum \& Product Rule

$$
\begin{array}{cc}
\text { Sum Rule } & p(x)=\sum_{y} p(x, y) \\
\text { Product Rule } & p(x, y)=p(y \mid x) p(x)
\end{array}
$$

The Rules of Probability

Sum \& Product Rule

$$
\begin{array}{cc}
\text { Sum Rule } & p(x)=\sum_{y} p(x, y) \\
\text { Product Rule } & p(x, y)=p(y \mid x) p(x)
\end{array}
$$

Bayes Theorem

- Using the product rule we obtain

$$
\begin{aligned}
p(y \mid x) & =\frac{p(x \mid y) p(y)}{p(x)} \\
p(x) & =\sum_{y} p(x \mid y) p(y)
\end{aligned}
$$

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat θ as a random variable under $p(\theta)$
- Infer the conditional distribution of the parameters θ given Data \mathcal{D} using Bayes theorem.
- Likelihood

$$
\begin{equation*}
=\underline{p(\mathcal{D} \mid \boldsymbol{\theta})} \tag{Prior}
\end{equation*}
$$

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Likelihood

$$
=\underline{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}
$$

- Prior

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Infer the conditional distribution of the parameters $\boldsymbol{\theta}$ given Data \mathcal{D} using Bayes theorem.
- Likelihood

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\underline{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}
$$

- Prior
- Posterior

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Infer the conditional distribution of the parameters $\boldsymbol{\theta}$ given Data \mathcal{D} using Bayes theorem.
- Likelihood
$p(\boldsymbol{\theta} \mid \mathcal{D})=\underline{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}$
posterior \propto likelihood \cdot prior
- Prior
- Posterior

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Infer the conditional distribution of the parameters $\boldsymbol{\theta}$ given Data \mathcal{D} using Bayes theorem.

$$
\begin{array}{ll}
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})} & \bullet \text { Likelihood } \\
\text { posterior } \propto \text { likelihood } \cdot \text { prior } & \\
& \text { Posterior } \\
& \bullet \begin{array}{l}
\text { Marginal likelihood } \\
\text { (normalization constant) }
\end{array}
\end{array}
$$

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Infer the conditional distribution of the parameters $\boldsymbol{\theta}$ given Data \mathcal{D} using Bayes theorem.
$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D}, \boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}}$
posterior \propto likelihood • prior
- Likelihood
- Prior
- Posterior
- Marginal likelihood (normalization constant)

Bayesian probability calculus

- Bayes rule is the basis for Bayesian inference and learning.
- Assume we have a model with parameters $\boldsymbol{\theta}$, e.g.

$$
y=\theta_{0}+\theta_{1} \cdot x+\epsilon
$$

- In maximum likelihood estimation we maximized $p(\mathcal{D} \mid \boldsymbol{\theta})$ w.r.t $\boldsymbol{\theta}$
- Idea: treat $\boldsymbol{\theta}$ as a random variable under $p(\boldsymbol{\theta})$
- Infer the conditional distribution of the parameters $\boldsymbol{\theta}$ given Data \mathcal{D} using Bayes theorem.
$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta}) \mathrm{d} \boldsymbol{\theta}}$
posterior \propto likelihood \cdot prior
- Likelihood
- Prior
- Posterior
- Marginal likelihood (normalization constant)

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{I}$

- Likelihood:

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood • prior

- Likelihood
- Prior
- Posterior
- Marginal likelihood

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{I}$

- Likelihood:

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

- Specify normal prior on μ :

$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood • prior
- Likelihood
- Prior
- Posterior
- Marginal likelihood

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{I}$

- Likelihood:

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

- Specify normal prior on $\mu: \quad p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$

$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood • prior
- Likelihood
- Prior
- Posterior
- Marginal likelihood

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{I}$

- Likelihood:

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

- Specify normal prior on $\mu: \quad p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood • prior

- Likelihood
- Prior
- Posterior
- Marginal likelihood

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{I}$

- Likelihood:

$$
p\left(\mathcal{D} \mid \mu, \sigma^{2}\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

- Specify normal prior on $\mu: \quad p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- $p(\mathcal{D})$ not needed for MAP estimation (constant in the parameter).
$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood • prior
- Likelihood
- Prior
- Posterior
- Marginal likelihood

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- take logarithm of the posterior
- Likelihood
$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood prior
- Prior
- Posterior
- Marginal likelihood (normalization constant)

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- take logarithm of the posterior

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z+\sum_{n=1}^{N} \log \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)+\log \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood prior

- Likelihood
- Prior
- Posterior
- Marginal likelihood (normalization constant)

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- take logarithm of the posterior

$$
\begin{array}{r}
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z+\sum_{n=1}^{N} \log \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)+\log \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right) \\
=Z+-\frac{1}{2}\left(\sum_{n=1}^{N} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{2}\left(\log \left(2 \pi \sigma_{\mu}^{2}\right)+\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
\end{array}
$$

- Likelihood
$p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}$
posterior \propto likelihood prior
- Prior
- Posterior
- Marginal likelihood (normalization constant)

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto \prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \cdot \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- take logarithm of the posterior

$$
\begin{array}{r}
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z+\sum_{n=1}^{N} \log \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)+\log \mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right) \\
=Z+-\frac{1}{2}\left(\sum_{n=1}^{N} \log \left(2 \pi \sigma^{2}\right)+\frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{2}\left(\log \left(2 \pi \sigma_{\mu}^{2}\right)+\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right) \\
=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
\end{array}
$$

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \cdot p(\boldsymbol{\theta})}{p(\mathcal{D})}
$$

posterior \propto likelihood prior

- Likelihood
- Prior
- Posterior
- Marginal likelihood (normalization constant)

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean μ II

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- set to zero and solve for $\mu_{\text {MAP }}$

$$
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- set to zero and solve for $\mu_{\text {MAP }}$

$$
\begin{array}{r}
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0 \\
\left(\frac{N}{\sigma^{2}}-\frac{1}{s_{0}^{2}}\right) \mu_{M A P}=\frac{1}{s_{0}^{2}} m_{0}+\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}\right)
\end{array}
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- set to zero and solve for $\mu_{\text {MAP }}$

$$
\begin{array}{r}
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0 \\
\left(\frac{N}{\sigma^{2}}-\frac{1}{s_{0}^{2}}\right) \mu_{M A P}=\frac{1}{s_{0}^{2}} m_{0}+\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}\right) \\
\mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{1}{N-\delta} \sum_{n=1}^{N} x_{n}
\end{array}
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- where $\delta=\frac{\sigma^{2}}{s_{0}}$
- set to zero and solve for $\mu_{\text {MAP }}$

$$
\begin{array}{r}
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0 \\
\left(\frac{N}{\sigma^{2}}-\frac{1}{s_{0}^{2}}\right) \mu_{M A P}=\frac{1}{s_{0}^{2}} m_{0}+\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}\right) \\
\mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{1}{N-\delta} \sum_{n=1}^{N} x_{n}
\end{array}
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- set to zero and solve for $\mu_{\text {MAP }}$

$$
\begin{gathered}
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0 \\
\left(\frac{N}{\sigma^{2}}-\frac{1}{s_{0}^{2}}\right) \mu_{M A P}=\frac{1}{s_{0}^{2}} m_{0}+\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}\right) \quad \mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{N}{N-\delta} \hat{\mu} \\
\mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{1}{N-\delta} \sum_{n=1}^{N} x_{n}
\end{gathered}
$$

"Bayesian estimation" in the normal distribution

Maximum a posteriori estimation of the mean $\mu \mathrm{II}$

$$
\log p(\boldsymbol{\theta} \mid \mathcal{D})=Z^{\prime}--\frac{1}{2}\left(\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)^{2}\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)^{2}\right)
$$

- Take derivative

$$
\frac{\partial p(\mu \mid \mathcal{D})}{\partial \mu}=-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu-m_{0}\right)
$$

- set to zero and solve for $\mu_{\text {MAP }}$

$$
\begin{array}{cc}
-\left(\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}-\mu_{M A P}\right)\right)-\frac{1}{s_{0}^{2}}\left(\mu_{M A P}-m_{0}\right)=0 & \begin{array}{c}
\text { regularization } \\
\text { parameter }
\end{array} \\
\left(\frac{N}{\sigma^{2}}-\frac{1}{s_{0}^{2}}\right) \mu_{M A P}=\frac{1}{s_{0}^{2}} m_{0}+\sum_{n=1}^{N} \frac{1}{\sigma^{2}}\left(x_{n}\right) & \mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{N}{N-\delta} \hat{\mu} \\
\mu_{M A P}=\frac{\delta}{N-\delta} m_{0}+\frac{1}{N-\delta} \sum_{n=1}^{N} x_{n} &
\end{array}
$$

- shrinkage parameter

Bayesian Inference for the Gaussian

Ingredients

- Data

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}
$$

Bayesian Inference for the Gaussian

Ingredients

- Data

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}
$$

- Model $\mathcal{H}_{\text {Gauss }}$ - Gaussian PDF

$$
\begin{aligned}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \\
\boldsymbol{\theta} & =\{\mu\}
\end{aligned}
$$

- For simplicity: assume variance σ^{2} is known.

Bayesian Inference for the Gaussian

Ingredients

- Data

$$
\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}
$$

- Model $\mathcal{H}_{\text {Gauss }}$ - Gaussian PDF

$$
\begin{aligned}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}} \\
\boldsymbol{\theta} & =\{\mu\}
\end{aligned}
$$

- For simplicity: assume variance σ^{2} is known.

(C.M. Bishop, Pattern Recognition and Machine

Learning)

$$
p(\mathcal{D} \mid \mu)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right)
$$

Bayesian Inference for the Gaussian

Bayes rule

- Combine likelihood with a Gaussian prior over μ

$$
p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)
$$

- The posterior is proportional to

$$
p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) p(\mu)
$$

Bayesian Inference for the Gaussian

$$
\begin{aligned}
& p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) \cdot p(\mu) \\
& \quad=\left[\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}}\right] \frac{1}{\sqrt{2 \pi s_{0}^{2}}} e^{-\frac{1}{2 s_{0}^{2}}\left(\mu-m_{0}\right)^{2}}
\end{aligned}
$$

Bayesian Inference for the Gaussian

$$
\begin{aligned}
& p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) \cdot p(\mu) \\
& =\left[\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}}\right] \frac{1}{\sqrt{2 \pi s_{0}^{2}}} e^{-\frac{1}{2 s_{0}^{2}}\left(\mu-m_{0}\right)^{2}} \\
& =\underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \frac{1}{\sqrt{2 \pi s_{0}^{2}}}}_{C 1} \exp \left[-\frac{1}{2 s_{0}^{2}}\left(\mu^{2}-2 \mu m_{0}+m_{0}^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(\mu^{2}-2 \mu x_{n}+x_{n}^{2}\right)\right]
\end{aligned}
$$

Bayesian Inference for the Gaussian

$$
\begin{aligned}
& p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) \cdot p(\mu) \\
& =\left[\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}}\right] \frac{1}{\sqrt{2 \pi s_{0}^{2}}} e^{-\frac{1}{2 s_{0}^{2}}\left(\mu-m_{0}\right)^{2}} \\
& =\underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2}}}}_{C 1}{ }^{N} \frac{1}{\sqrt{2 \pi s_{0}^{2}}} \exp \left[-\frac{1}{2 s_{0}^{2}}\left(\mu^{2}-2 \mu m_{0}+m_{0}^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(\mu^{2}-2 \mu x_{n}+x_{n}^{2}\right)\right] \\
& =C 2 \exp [-\frac{1}{2} \underbrace{\left(\frac{1}{s_{0}^{2}}+\frac{N}{\sigma^{2}}\right)}_{1 / s_{P}^{2}}(\mu^{2}-2 \mu \underbrace{\hat{\sigma}\left(\frac{1}{s_{0}^{2}} m_{0}+\frac{1}{\sigma^{2}} \sum_{n=1}^{N} x_{n}\right)}_{m_{P}})+C 3]
\end{aligned}
$$

Bayesian Inference for the Gaussian

$$
\begin{aligned}
& p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) \cdot p(\mu) \\
& =\left[\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}}\right] \frac{1}{\sqrt{2 \pi s_{0}^{2}}} e^{-\frac{1}{2 s_{0}^{2}}\left(\mu-m_{0}\right)^{2}} \\
& =\underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2}}}{ }^{N} \frac{1}{\sqrt{2 \pi s_{0}^{2}}}}_{C 1} \exp \left[-\frac{1}{2 s_{0}^{2}}\left(\mu^{2}-2 \mu m_{0}+m_{0}^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(\mu^{2}-2 \mu x_{n}+x_{n}^{2}\right)\right] \\
& =C 2 \exp [-\frac{1}{2} \underbrace{\left(\frac{1}{s_{0}^{2}}+\frac{N}{\sigma^{2}}\right)}_{1 / s_{P}^{2}}(\mu^{2}-2 \mu \underbrace{\hat{\sigma}\left(\frac{1}{s_{0}^{2}} m_{0}+\frac{1}{\sigma^{2}} \sum_{n=1}^{N} x_{n}\right)}_{m_{P}})+C 3]
\end{aligned}
$$

- Posterior parameters follow as the new coefficients.

Bayesian Inference for the Gaussian

$$
\begin{array}{l}
p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) \cdot p(\mu) \\
=\left[\prod_{n=1}^{N} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}\left(x_{n}-\mu\right)^{2}}\right] \frac{1}{\sqrt{2 \pi s_{0}^{2}}} e^{-\frac{1}{2 s_{0}^{2}}\left(\mu-m_{0}\right)^{2}} \\
=\underbrace{\frac{1}{\sqrt{2 \pi \sigma^{2}}}}_{C 1}{ }^{N} \frac{1}{\sqrt{2 \pi s_{0}^{2}}}
\end{array} \exp \left[-\frac{1}{2 s_{0}^{2}}\left(\mu^{2}-2 \mu m_{0}+m_{0}^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(\mu^{2}-2 \mu x_{n}+x_{n}^{2}\right)\right] . \underbrace{\underbrace{\left(\frac{1}{s_{0}^{2}}+\frac{N}{\sigma^{2}}\right)}_{m_{P}}\left(\mu^{2}-2 \mu \exp \left[-\frac{1}{s_{0}^{2}} m_{0}+\frac{1}{\sigma^{2}} \sum_{n=1}^{N} x_{n}\right)\right.}_{1 / s_{P}^{2}})+C 3] \quad .
$$

- Posterior parameters follow as the new coefficients.
- Note: Posterior has form of normal distribution, thus is normalized

Bayesian Inference for the Gaussian

- Posterior of the mean: $p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto \mathcal{N}\left(\mu \mid m_{P}, s_{P}\right)$, after some rewriting

$$
\begin{aligned}
m_{P} & =\frac{\sigma^{2}}{N s_{0}^{2}+\sigma^{2}} m_{0}+\frac{N s_{0}^{2}}{N s_{0}^{2}+\sigma^{2}} \hat{\mu}, \quad \hat{\mu}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \\
\frac{1}{s_{P}^{2}} & =\frac{1}{s_{0}^{2}}+\frac{N}{\sigma^{2}}
\end{aligned}
$$

- Limiting cases for no and infinite amount of data

	$N=0$	$N \rightarrow \infty$
m_{P}	m_{0}	$\hat{\mu}$
s_{P}^{2}	s_{0}^{2}	0

Bayesian Inference for the Gaussian

Examples

- Posterior $p\left(\mu \mid \mathcal{D}, \sigma^{2}\right)$ for increasing data sizes.

(C.M. Bishop, Pattern Recognition and Machine Learning)

Conjugate priors

- It is not chance that the posterior

$$
p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) p(\mu)
$$

is tractable in closed form for the Gaussian.

Conjugate priors

- It is not chance that the posterior

$$
p\left(\mu \mid \mathcal{D}, \sigma^{2}\right) \propto p\left(\mathcal{D} \mid \mu, \sigma^{2}\right) p(\mu)
$$

is tractable in closed form for the Gaussian.

Conjugate prior

$p(\theta)$ is a conjugate prior for a particular likelihood $p(\mathcal{D} \mid \theta)$ if the posterior is of the same functional form than the prior.

Conjugate priors

Exponential family distributions

- A large class of probability distributions are part of the exponential family (all in this course) and can be written as:

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=h(\boldsymbol{x}) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{u}(\boldsymbol{x})\right\}
$$

Conjugate priors

Exponential family distributions

- A large class of probability distributions are part of the exponential family (all in this course) and can be written as:

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=h(\boldsymbol{x}) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{u}(\boldsymbol{x})\right\}
$$

- For example for the Gaussian:

$$
\begin{aligned}
p\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x^{2}-2 x \mu+\mu^{2}\right)\right\} \\
& =h(x) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{u}(\boldsymbol{x})\right\}
\end{aligned}
$$

Conjugate priors

Exponential family distributions

- A large class of probability distributions are part of the exponential family (all in this course) and can be written as:

$$
p(\boldsymbol{x} \mid \boldsymbol{\theta})=h(\boldsymbol{x}) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{u}(\boldsymbol{x})\right\}
$$

- For example for the Gaussian:

$$
\begin{aligned}
p\left(x \mid \mu, \sigma^{2}\right) & =\frac{1}{2 \pi \sigma^{2}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x^{2}-2 x \mu+\mu^{2}\right)\right\} \\
& =h(x) g(\boldsymbol{\theta}) \exp \left\{\boldsymbol{\theta}^{\top} \boldsymbol{u}(\boldsymbol{x})\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { with } \boldsymbol{\theta}=\binom{\mu / \sigma^{2}}{-1 / 2 \sigma^{2}}, h(x)=\frac{1}{\sqrt{2 \pi}} \\
& \boldsymbol{u}(x)=\binom{x}{x^{2}}, g(\boldsymbol{\theta})=\left(-2 \theta_{2}\right)^{1 / 2} \exp \left(\frac{\theta_{1}^{2}}{4 \theta_{2}}\right)
\end{aligned}
$$

Conjugate priors

Exponential family distributions

Conjugacy and exponential family distributions

- For all members of the exponential family it is possible to construct a conjugate prior.
- Intuition: The exponential form ensures that we can construct a prior that keeps its functional form.

Conjugate priors

Exponential family distributions

Conjugacy and exponential family distributions

- For all members of the exponential family it is possible to construct a conjugate prior.
- Intuition: The exponential form ensures that we can construct a prior that keeps its functional form.
- Conjugate priors for the Gaussian $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$
- $p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$

Conjugate priors

Exponential family distributions

Conjugacy and exponential family distributions

- For all members of the exponential family it is possible to construct a conjugate prior.
- Intuition: The exponential form ensures that we can construct a prior that keeps its functional form.
- Conjugate priors for the Gaussian $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$
- $p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$
- $p\left(\frac{1}{\sigma^{2}}\right)=\mathcal{G}\left(\left.\frac{1}{\sigma^{2}} \right\rvert\, a_{0}, b_{0}\right)$.

Conjugate priors

Exponential family distributions

Conjugacy and exponential family distributions

- For all members of the exponential family it is possible to construct a conjugate prior.
- Intuition: The exponential form ensures that we can construct a prior that keeps its functional form.
- Conjugate priors for the Gaussian $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$
- $p(\mu)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right)$
- $p\left(\frac{1}{\sigma^{2}}\right)=\mathcal{G}\left(\left.\frac{1}{\sigma^{2}} \right\rvert\, a_{0}, b_{0}\right)$.
- $p\left(\mu, \frac{1}{\sigma^{2}}\right)=\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2}\right) \cdot \mathcal{G}\left(\left.\frac{1}{\sigma^{2}} \right\rvert\, a_{0}, b_{0}\right)$

Gamma distribution
$\mathcal{G}(x \mid a, b)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}$

Bayesian Inference for the Gaussian

Sequential learning

- Bayes rule naturally leads itself to sequential learning

$$
\begin{aligned}
& p_{1}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{1} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta}) \\
& p_{2}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{2} \mid \boldsymbol{\theta}\right) p_{1}(\boldsymbol{\theta})
\end{aligned}
$$

- Note: Assuming the datasets are independent, sequential updates and a single learning step vield the same answer.

Bayesian Inference for the Gaussian

Sequential learning

- Bayes rule naturally leads itself to sequential learning
- Assume one by one multiple datasets become available: $\mathcal{D}_{1}, \ldots, \mathcal{D}_{S}$

$$
\begin{aligned}
& p_{1}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{1} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta}) \\
& p_{2}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{2} \mid \boldsymbol{\theta}\right) p_{1}(\boldsymbol{\theta})
\end{aligned}
$$

- Note: Assuming the datasets are independent, sequential updates and a single learning step yield the same answer.

Bayesian Inference for the Gaussian

Sequential learning

- Bayes rule naturally leads itself to sequential learning
- Assume one by one multiple datasets become available: $\mathcal{D}_{1}, \ldots, \mathcal{D}_{S}$

$$
\begin{aligned}
& p_{1}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{1} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta}) \\
& p_{2}(\boldsymbol{\theta}) \propto p\left(\mathcal{D}_{2} \mid \boldsymbol{\theta}\right) p_{1}(\boldsymbol{\theta})
\end{aligned}
$$

- Note: Assuming the datasets are independent, sequential updates and a single learning step yield the same answer.

Outline

Course Overview

Probability Theory
Review of probabilities
Random variables
Information and Entropy
Normal distribution
Parameter estimation for the normal distribution

Bayesian inference for the Gaussian

Linear Regression

Summary

Regression

Noise model and likelihood

- Given a dataset $\mathcal{D}=\left\{\boldsymbol{x}_{n}, y_{n}\right\}_{n=1}^{S}$, where $\boldsymbol{x}_{n}=\left\{x_{n, 1}, \ldots, x_{n, S}\right\}$ is S dimensional, fit parameters $\boldsymbol{\theta}$ of a regressor f with added Gaussian noise:

$$
y_{n}=f\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right)+\epsilon_{n} \quad \text { where } \quad p\left(\epsilon \mid \sigma^{2}\right)=\mathcal{N}\left(\epsilon \mid 0, \sigma^{2}\right)
$$

- Equivalent likelihood formulation:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid f\left(\boldsymbol{x}_{n} ; \boldsymbol{\theta}\right), \sigma^{2}\right)
$$

Regression

Choosing a regressor

- Choose f to be linear:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise include an additional column of ones in each \boldsymbol{x}_{n}.

Regression

Choosing a regressor

- Choose f to be linear:

$$
p(\boldsymbol{y} \mid \boldsymbol{X})=\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}+c, \sigma^{2}\right)
$$

- Consider bias free case, $c=0$, otherwise include an additional column of ones in each \boldsymbol{x}_{n}.

Equivalent graphical model

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta} \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is
- Least squares and maximum likelihood are equivalent.

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta} \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

Linear Regression

Maximum likelihood

- Taking the logarithm, we obtain

$$
\begin{aligned}
\ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta} \sigma^{2}\right) & =\sum_{n=1}^{N} \ln \mathcal{N}\left(y_{n} \mid \boldsymbol{x}_{n} \cdot \boldsymbol{\beta}, \sigma^{2}\right) \\
& =-\frac{N}{2} \ln 2 \pi \sigma^{2}-\frac{1}{2 \sigma^{2}} \underbrace{\sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}}_{\text {Sum of squares }}
\end{aligned}
$$

- The likelihood is maximized when the squared error is minimized.
- Least squares and maximum likelihood are equivalent.

Linear Regression and Least Squares

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$
E(\boldsymbol{\beta})=\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta}, \sigma^{2}\right)=\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right]
$$

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta}, \sigma^{2}\right)=\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right]
$$

- Set gradient w.r.t. $\boldsymbol{\beta}$ to zero

Linear Regression and Least Squares

- Derivative w.r.t a single weight entry β_{i}

$$
\frac{d}{\mathrm{~d} \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\theta}, \sigma^{2}\right)=\frac{d}{\mathrm{~d} \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\theta}\right)^{2}\right]
$$

- Set gradient w.r.t. $\boldsymbol{\beta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\beta}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) \boldsymbol{x}_{n}^{\top}=0 \\
& \quad \Longrightarrow \boldsymbol{\beta}_{\mathrm{M}}=?
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t. a single weight entry β_{i}

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{\partial}{\partial \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t. a single weight entry β_{i}

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{\partial}{\partial \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t. $\boldsymbol{\beta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\beta}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) \boldsymbol{x}_{n}^{\top}=0 \\
& \quad \Longrightarrow \boldsymbol{\beta}_{\mathrm{M}}=\underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}}_{\text {Pseudo inverse }} \boldsymbol{y}
\end{aligned}
$$

Linear Regression and Least Squares

- Derivative w.r.t. a single weight entry β_{i}

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{i}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) & =\frac{\partial}{\partial \beta_{i}}\left[-\frac{1}{2 \sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right)^{2}\right] \\
& =\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) x_{i}
\end{aligned}
$$

- Set gradient w.r.t. $\boldsymbol{\beta}$ to zero

$$
\begin{aligned}
& \nabla_{\boldsymbol{\beta}} \ln p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\frac{1}{\sigma^{2}} \sum_{n=1}^{N}\left(y_{n}-\boldsymbol{x}_{n} \cdot \boldsymbol{\beta}\right) \boldsymbol{x}_{n}^{\top}=0 \\
& \quad \Longrightarrow \boldsymbol{\beta}_{\mathrm{M}}=\underbrace{\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top}}_{\text {Pseudo inverse }} \boldsymbol{y}
\end{aligned}
$$

- Here, the matrix \boldsymbol{X} is defined as $\boldsymbol{X}=\left[\begin{array}{ccc}x_{1,1} & \ldots & x 1, S \\ \ldots & \ldots & \ldots \\ x_{N, 1} & \ldots & x_{N, S}\end{array}\right]$

Outline

```
Course Overview
Probability Theory
    Review of probabilities
    Random variables
    Information and Entropy
    Normal distribution
        Parameter estimation for the normal distribution
Bayesian inference for the Gaussian
Linear Regression
```

Summary

Conclusions

Summary - week 1

- Probability theory: the language of uncertainty.
- Key rules of probability: sum rule, product rule.
- Bayes rules formes the fundamentals of learning. (posterior \propto likelihood • prior).
- The entropy quantifies uncertainty.
- Parameter learning using maximum likelihood.
- Bayesian inference for the Gaussian.
- Linear regression
- Parameter estimation

Conclusions

Summary - week 1

- Probability theory: the language of uncertainty.
- Key rules of probability: sum rule, product rule.
- Bayes rules formes the fundamentals of learning. (posterior \propto likelihood • prior).
- The entropy quantifies uncertainty.
- Parameter learning using maximum likelihood.
- Bayesian inference for the Gaussian.
- Linear regression
- Parameter estimation

Outlook - week 2

- Revisit the (multivariate) normal distribution, showing some useful properties.
- Statistical testing
- Genome-wide association studies using linear regression
- Bayesian linear regression and shrinkage

Conclusions

Summary - week 1

- Probability theory: the language of uncertainty.
- Key rules of probability: sum rule, product rule.
- Bayes rules formes the fundamentals of learning. (posterior \propto likelihood • prior).
- The entropy quantifies uncertainty.
- Parameter learning using maximum likelihood.
- Bayesian inference for the Gaussian.
- Linear regression
- Parameter estimation

Outlook - week 2

- Revisit the (multivariate) normal distribution, showing some useful properties.
- Statistical testing
- Genome-wide association studies using linear regression
- Bayesian linear regression and shrinkage

Acknowledgements

- Oliver Stegle (builds on joint course material)

