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Why probabilistic modeling?

Inferences from data are intrinsically uncertain.

v

Probability theory: model uncertainty instead of ignoring it!

v

Applications are not limited to statistical genetics: Machine Learning,
Data Mining, Pattern Recognition, etc.
Goal of this part of the course

» Overview on probabilistic modeling

» Key concepts
» Focus on Applications in statistical genetics
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Why probabilistic modeling? Example

» Genes measured in yeast

> e.g. Is gene 1 co-expressed with

gene 27

» Probabilistic models —
probability theory

» This course: linear models

(and kernel methods)

gene, = c+ gene; - J + €

» Is this dependence significant?

» Statistical testing

» Can | predict the level of gene2

observing genel?

» Take known covariates into

account

» Estimate hidden
covariates/confounders

gene 2

15 2.0
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Example: Genome-wide association studies

Given:
» Genetics for multiple
individuals
» e.g.: Single nucleotide
polymorphisms (SNPs),
microsatelite markers, ...
» Phenotypes for the same
individuals
> e.g.: disease, height,
gene-expression, ...

Goal:

» Try to find genetic markers,
that explain the variance in
the phenotype.
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Why probabilistic modeling?

Example: Genome-wide association studies - continued

In statistics, association is any
relationship between two
measured quantities that renders
them statistically dependent.”

» Direct association
» Indirect association

» Can be beneficial
e.g.. Linkage
» Can be harmful

e.g.. Population structure
*Oxford Dictionary of Statistics




Further reading, useful material

» Christopher M. Bishop: Pattern Recognition and Machine learning.
» Good background, covers most of the machine learning used in this
course and much more!

» Substantial parts of this tutorial borrow figures and ideas from this
book.

» David J.C. MacKay: Information Theory, Learning and Inference

» Very worthwhile reading, not quite the same quality of overlap with the
lecture synopsis.
> Freely available online.
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Course structure

» Probability Theory

>

>

Rules of probability
calculus
Distributions

» Linear models (statistics)

vV vy vYyy

Linear regression
Parameter estimations
Statistical testing
Regularization (ridge,
Lasso)

» Random effects models
» Linear mixed models

» Latent variable models
» Principle components
analysis (PCA)
» Mixture models
» Kernel methods

> Introduction to kernels

» Non-parametric regression
(Gaussian Process)

» Non-linear PCA models
(kernel PCA, GPLVM)

» Multivariate regression



Course Overview

Probability Theory
Review of probabilities
Random variables
Information and Entropy

Normal distribution
Parameter estimation for the normal distribution

Bayesian inference for the Gaussian
Linear Regression

Summary
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Probabilities
> Probabilities describe likeliness of the outcomes of an experiment
Q)
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> pick a box and
then take a ball

> experiment at random > coin flip g ie:aesjfep;e::::on
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Probability function

» Probability functions are
non-negative, P(A) >0

» If A and B are disjoint
» P(AUB) = P(A)+P(B)
(union)
» P(ANnB)=0
(intersection)

» Probabilities sum to 1 over
union of all possible disjoint
events A1 UAy U ...

» P(AJUAyU...)=P(A) + P(4y) +---=P(Q) =1
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Complement and DeMorgan's Laws

» The complement of A is

denoted by A€
» QC = @

P(A°) =1—-P(A)
P(ANA®) =0
P(AUA%) =1

» DeMorgan’s Laws:

» (AUB) = A°N B°
» (ANB) = A°U B°



Events

If Ais a subset of B

v

» AUB=2B
» P(AUB) = P(B)
» ANB=A

v

P(AN B) = P(A)
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Products of sample spaces

» Typically we don't perform
only a single experiment )
) » Experiments can be
» Repeated experiments independent
> Flip a coin N times > Flip a coin twice
» Measure a phenotype at > P(H,H) = P(H)2
different time points ’
. . > or dependent
» Multiple experiments b q ;
. » Dependence o
> Meas-,ure expression of measurements over time
multiple genes » Two genes that are
» Sample space is product of co-regulated
sample spaces » Plgy=2,90 =) #
> Q=0 x Oy x Oy P(g1 =) P92 =)

» number of elements
multiply
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» Some times occurrence of
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Conditional probability

>

>

Some times occurrence of
one event yields information
about another one

disjoint events
subsets

dependent measurements
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Conditional probability

» Some times occurrence of
one event yields information
about another one P(AN B)
» disjoint events > P(A|B) = P(B)
> subsets » P(ANB) = P(A|B)-P(B)

» dependent measurements (Product rule)




Independence

» The three following
statements are equivalent
and imply independence of
A and B:

» P(A|B) = P(A),
» P(B|A) = P(B),
» P(ANB) = P(A) - P(B).
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Probabilities and random variables

» Let X be a random variable, ,
defined over a set X" or =
measurable space. w ] { { |
» P(X = z) denotes the
probability that X takes
value z, short p(z). Z p(x) =1

» Probability mass function
(discrete)

» Probability density
function (continuous)

» Probabilities are
non-negative,
P(X=2)>0

» Probabilities sum to one

reX
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Expected values and variances

Moments

Expected value

>

>

Average value of the random variable X

sample mean X of a data sample drawn
from p(x).

1 &
Expected value E [X] is the first moment

of P(X)

discrete

E[X] =) x-p(z)

reX

continuous

. 2
Variance o

> Measures average squared deviation frol

the mean of X.

sample variance of a data sample drawn
from p(z).
1
N

n=1

(20— X)°

Second centralized moment of X

> square of the standard deviation o

discrete
(X)) =E[X-E[X])*] =D (z—
continuous



Distributions of multiple random variables

i
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Yj Ngj } T

xT;

Joint Probability

P(X =2,V =y;) = 22

N

Marginal Probability

Conditional Probability

P(Y =y | X =) =

(C.M. Bishop, Pattern Recognition and Machine Learning)

nij

Ci



Distributions of multiple random variables

¢
~=
Marginal Probability
Yj i ri c
! } ! P(X =) = &
T Conditional Probability

Product Rule nij
P(Y =y, | X = ;) = "2
Ni; G C;

P(X:,Q?z,YZyJ):

Mij _ Mg
N C; N
:P(Y:yj\X:xi)P(X::ci)

(C.M. Bishop, Pattern Recognition and Machine Learning)



Distributions of multiple random variables

¢
——
} Sum Rule
yj 71,’j T’j
&
P(X =x;) = —

— ( 'L) N
Product Rule _ Z
PX =2,V =y) = 4 -l G i

v J N C; N

=P =y;| X =2;)P(X = ;)

(C.M. Bishop, Pattern Recognition and Machine Learning)
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» Entropy H(X) is the quantitative description of
uncertainty

» H(X) =0: certainty about X.
» H(X) maximal if all possibilities are equal
probable.

» Uncertainty and information are additive.
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Information and Entropy

» Information is the reduction of uncertainty.

» Entropy H(X) is the quantitative description of
uncertainty

» H(X) =0: certainty about X.

» H(X) maximal if all possibilities are equal
probable.

» Uncertainty and information are additive.

> These conditions are fulfilled by the entropy
function:

- > P(X =a)log P(X = z)

reX

> Entropy is a vector-valued function (input is a
probability distribution)

example:
binary entropy function

Ha(z) "

0 0'2 0" o 0‘8 1T

(D. MacKay, Information Theory,

Inference, and Learning Algorithms)
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Definitions related to entropy and information

» Entropy is the average surprise

= Y P(X =) (~log P(X =)

reX

surprise

» Conditional entropy of X given Y =y

HX|Y =y)=—-) P(X=x|Y=y)logP(X =z|Y =y)
zeX

» Conditional entropy of X given Y is the average (over Y') conditional
entropy of X given Y =y

HX|Y)=> PY = y(—ZP(X::r|Y:y)logP(X:x|Y:y)>

yey zEX

=— Y PX=2Y=y)logP(X=z|Y =y)
zeEX ,yey
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Definitions related to entropy and information
> Chain rule
H(X,Y)=H(X)+H(Y |X)=H(Y)+ H(X|Y)
> Mutual information

I(X;Y)=H(X)-HX|Y)=HY)-HY|X)

» I(XGY))=1(Y; X)
> average reduction in uncertainty about X when learning value of Y
(and vice versa)

H(Y)

\ H(X|Y) 1Y) [ HYX) ]
(D. MacKay, Information Theory, Inference, and Learning Algorithms)
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Independence of X and Y
» Under independence of X and Y, p(z,y) = p(z)p(y).
» HX,Y)=H(X)+ H(Y)
HX,)Y)=— Y  PX=x)PY =y)log(P(X =xz)P(Y =y))
CEX yEY
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Definitions related to entropy and information
Independence of X and Y
» Under independence of X and Y, p(z,y) = p(z)p(y).
» HX,Y)=H(X)+ H(Y)
HX,)Y)=— Y  PX=x)PY =y)log(P(X =xz)P(Y =y))
CEX yEY

=— Z P(X =2)P(Y =y)logP(X =2)+ P(X =2)P(Y =y)log P(Y =

zeEX,yey
=->Y P(X =x)log P(X —> P(Y =y)log P(Y =)
zEX yey
» I(X;Y)=H(X)+H(Y)—- H(X,Y) =0
N——
H(X)+H(Y)
» H(X|Y)=H(X)
HX|Y)=- > PX P(Y =y)logP(X =z |Y =y)
zeX,yey D

P(X=x)

=- Y P(X =x)log P(X =)

rzeEX



Entropy in action
The optimal weighing problem

» Given 12 balls, all equal except for one that is lighter or heavier.
» What is the ideal weighting strategy and how many weighings are
needed to identify the odd ball and tell if it is lighter or heavier?

1000 |
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> For two probability distributions over X, P(X)
and Q(X), the KL divergence (or relative
Entropy) is defined as

P(X =
Dkr(P|Q) =Y P(X =uz)log (
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Kulback-Leibler divergence

Definition of convexity:

> f(z) is convex over interval

> For two probability distributions over X, P(X)
b), if Vz1, 22 € (a,b) and

and Q(X), the KL divergence (or relative (a,

Entropy) is defined as 0<A<1
M FfQz1+ (1= N)z2)
Dres(PI|Q) = Q;P Mg o =y) < Af(@1) + (1= N)f(x2)

> Drr(P, Q) # Drr(QllIP)
(not symmetric)

» Dgr(P,||Q) is strictly convex.

T 7 T2
2" =Az1+ (1 - Nz2

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)



Kulback-Leibler divergence

Definition of convexity:

> For two probability distributions over X, P(X) > f(=z) i5_ convex over interval
and Q(X), the KL divergence (or relative (a,b), if Va1, 22 € (a,b) and
Entropy) is defined as 0<A<1
Dkr(P P(X =z)log ————=
Pl =2 1 fQv=y) <M (@) + (1= N f(r2)

> Drr(P, Q) # Drr(QllIP)
(not symmetric)

> Dkr(P,]|Q) is strictly convex.
> Drr(PIlQ)>0  (Gibb's inequality)

T 7 T2
2" =Az1+ (1 - Nz2

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)



Kulback-Leibler divergence

Definition of convexity:

> For two probability distributions over X, P(X) > f(=z) i5_ convex over interval
and Q(X), the KL divergence (or relative (a,b), if Va1, 22 € (a,b) and
Entropy) is defined as 0<A<1
Dkr(P P(X =z)log ————=
Pl =2 1 fQv=y) <M (@) + (1= N f(r2)

> Drr(P, Q) # Drr(QllIP)
(not symmetric)

> Dkr(P,]|Q) is strictly convex.
» Dxr(P|Q)>0  (Gibb's inequality)
» Dgr(P||Q) =0 if and only if P = Q.

T 7 T2
2" =Az1+ (1 - Nz2

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)



Kulback-Leibler divergence

vV v vy

Definition of convexity:

For two probability distributions over X, P(X) > f(z) i5_ convex over interval
and Q(X), the KL divergence (or relative (a,b), if Va1, 22 € (a,b) and
Entropy) is defined as 0<A<1
Dkr(P||Q) = P(X =z)log ————=
KL (P| 26; Qv =) < Mf(@n) + (1 — N)f(z2)

Dk1(P,[|Q) # Drr(QlllIP)

(not symmetric)

Dk 1 (P,]|Q) is strictly convex.
Dki(P|Q) >0  (Gibb's inequality)
Dkr(P||Q) =0 if and only if P = Q.

T 7 T2

KL divergence will be useful as scoring function & Aen 4 (1 A
for approximations ) of probability
distributions P that are intractable.

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)
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» Normal distribution (Gaussian distribution)

0.3

0.30)

! — )
p(x’//f702):N($|,u,,0'2): -e 2;2(1“ /’L)2

V2mo? o

» data term normalization constant
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» Multivariate normal distribution
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Probability distributions

» Normal distribution (Gaussian distribution)

L g

plpmo®) = N (2] mo?) =

» Multivariate normal distribution

P($|N72):N($’Ma2)

- exp —%(33 —p) N (a- “)]

V|27 X|

» data term normalization constant



Probability distributions

continued...

» Bernoulli

p(z|0) =671 —0)'*



Probability distributions

continued...

» Bernoulli
p(x]6) = 07(1 - 6)'~
» Gamma
p(x|a,b) = @ lebe

I'(a)

plafa=1,b=1)




Probability distributions

The Gaussian revisited

» Gaussian PDF

LI

N(CE|/};,O’2):W€

» Positive: N (z | p,0%) >0
“+o0
» Normalized: N (x| p,0)dx =1 (check)

— 00




Probability distributions

The Gaussian revisited

v

Gaussian PDF
1 1

N (2| po?) = ———c mz @’
(@ 1 wo7) V2no?
Positive: N (z | p,0%) >0
+oo
Normalized: N (x| p,0)dx =1 (check)

Expectation:

“+oo
<:c>:/ N(z|p,o?) zde = p
Variance: Var[z] =< 2? > — <z >?

— 20?2 =2

i
0 3




Inference for the normal distribution
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Inference for the normal distribution

Ingredients

» Data sampled from unknown
distribution p(D | 6y)

D={x1,...,xzn} ~p(D]|6y)
» Model Hgguss — normal PDF

2
1G]

1
N ,0%) =
(21 m07) 2mo?
0:{M702}

0.4(

0.30]

0.25)

0.20)

0.15]

0.10]

0.05

0.00
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Inference for the normal distribution

Ingredients

» Data sampled from unknown
distribution p(D | 8y)

D={x1,...,xzn} ~p(D]|6y)

(@)
» Model Hcauss — normal PDF :
N (2|, 0?)
1 1 2
N(z|po?)= e 2oz (@H)
( [ ) V2mo?
0 = {u, 02}
» Likelihood |

(C.M. Bishop, Pattern Recognition and Machine

Learning)



Inference for the normal distribution

Maximum likelihood

» Likelihood

§D16) - H/v ol ma?) o

N (2|, )

T, T
(C.M. Bishop, Pattern Recognition and Machine

Learning)



Inference for the normal distribution

Maximum likelihood

» Likelihood

§D16) - H/v ol ma?) o

N (2|, )
» Maximum likelihood

T, T
(C.M. Bishop, Pattern Recognition and Machine

Learning)



Inference for the normal distribution

Maximum likelihood

» Likelihood

p(D|6) = H/\/ Ty | p,0?%) (o)

N (2|, )
» Maximum likelihood
» Chose parameters [i and 62 that
maximize the likelihood of D e =

A~ (C.M. Bishop, Pattern Recognition and Machine
0 = argmaxp(D | 9)
o

Learning)
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Maximum likelihood estimation in the normal distribution

» Data sample D of size N
modeled by a univariate » Equivalently maximize the
normal distribution log-Likelihood

> Likelihood of the data under log p(D |, 0%) = L (,07)

the model p(D |, o?):
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» Data sample D of size N
modeled by a univariate
normal distribution

> Likelihood of the data under
the model p(D |, o?):

N
H/\/(:cn | p,0?)
n=1
N
-1I L e
V2mo?
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Maximum likelihood estimation in the normal distribution

» Data sample D of size N
modeled by a univariate
normal distribution

> Likelihood of the data under
the model p(D |, o?):

N
H/\/(:cn | p,0?)
n=1
N
-1I L e
V2mo?

» Equivalently maximize the
log-Likelihood
logp(D |, 0%) = L (p,0°)

N
L(p,0%) = logN (zy | p,0%)
n=1

N 1
_ 2 2
= n§:1 ~3 log(2mo )—202 (xp, — )
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Maximum likelihood estimation in the normal distribution

& 1
2
E log (2mo?) — ﬁ(xn — )

n=1
> Take the derivative of £ (,u, 02) with
respect to u:

oL (u,0°

oL (mwo®) _ ii( _
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Maximum likelihood estimation in the normal distribution
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respect to u:
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& 1
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202
n=1

> Take the derivative of £ (,u, 02) with
respect to u:
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Maximum likelihood estimation in the normal distribution

& 1
Z ~log(2m0?) — — (zn — p)?

202
n=1

> Take the derivative of £ (,u, 02) with
respect to u:

OE(M,JQ) _ 1<
B S

> set to zero and solve for ji:

N
1 .
——5 2 (@n—p)=0
n=1
N
1 N
- Qe+ A =0

t>

L&
=N Z sample mean



Maximum likelihood estimation in the normal distribution

log (2mo?) — %(xn —u)?

Mz

n=1

> Take the derivative of £ (j1,0%) with
respect to

P
oL (u,o”) 1 & 9L (j.o7) (8 0%) =
“on ;;(ﬂﬂn — 1) do?

> set to zero and solve for ji:

> Take the derivative of £ (,u, 02) with
respect to u:

1
o2 Z(x"_ 1) =0
n=1
N
1 N
= Q)+ 5Aa=0
n=1



Maximum likelihood estimation in the normal distribution

log (2mo?) — %(xn —u)?

Mz

n=1

> Take the derivative of £ (j1,0%) with

> Take the derivative of £ (,u, 02) with 5
respect to o”:

respect to u:

~ 2 N
OE(M,JQ) X oL (,LL,U ) B N 1 B
i ;T;(xn — ) 90 T 20 2 20

> set to zero and solve for ji:

1
o2 Z(x"_ 1) =0
n=1
N
1 N
= Q)+ 5Aa=0
n=1



Maximum likelihood estimation in the normal distribution

)-3-

n=1

l\.’)\»—l
[\]
[\V)

log(2mo?) — %(xn —u)?

_ Loy .
> Take the derivative of £ (u, 02) with > Take the derivative of £ (ji,0”) with

2.
respect to u: respect to o”:
N oL (i, 0 N 1
oL (p0®) _ LZ # _ 72 n Z R
8;,4, B 2 do 20 — 20
> set to zero and solve for fi: > set to zero and solve for 62:
al 1
1 . _ _ 2 =0
=) Z(xn—,u):(] 262 + 12&4($n )
n=1 n=
N
N
n=1



Maximum likelihood estimation in the normal distribution

N
n=1

log(2mo?) — %(xn —u)?

l\.’)\»—l
[\]
[\V)

_ Loy .
> Take the derivative of £ (u, 02) with > Take the derivative of £ (ji,0”) with

t to o
respect to p: respect to o :
~ 2 N
oL (u, P OL(f0®) N g~ 1
e o = =t 3 e )

> set to zero and solve for ji:

N
N N 1
1 . A2
~ 2 > (zn—f) =0 262 " L 551 (Tn =) =0
n=1 -
N N6 L1
N _ Zf N2
—; E .Tn)'f‘;[izo 2 n:12($n ,LL)
n=1



Maximum likelihood estimation in the normal distribution
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n=1

log( 27ra —

l\.’)\»—l
[\]
[\V)
—
8
3
I
=
=

_ Loy .
> Take the derivative of £ (u, 02) with > Take the derivative of £ (ji,0”) with

2.
respect to respect to o”:
~ 2 N
oL (p, o* 1 & M __ N 1 2
- - (o 902 207 T 2 5 (0~ H)
H n=1 n=1
> set to zero and solve for fi: > set to zero and solve for 62:
N
N N 1
1 N _ 2
- > (@ —) =0 557 sz (@n =) =0
n=1 n=
al N6? L1
N _ 1 a2
o2 ngl n) o2 M 2 — 2
N
N 1
1 ~2 L a2
o= i an sample mean =N Z(wn i)



Maximum likelihood estimation in the normal distribution

)-3-

n=1

log( 27ra —

l\.’)\»—l
[\]
[\V)
—
8
3
I
=
=

_ Loy .
> Take the derivative of £ (u, 02) with > Take the derivative of £ (ji,0”) with

2.
respect to u: respect to o”:
.9 N
oL (n,0” 1 & OL(o*) N N~ 1
T = 72 9o 597 T2 5,1 — 1)
K n=1 n=1
> set to zero and solve for fi: > set to zero and solve for 62:
N
N N 1
1 . _ 2
—=3 ) (@ =) =0 257 5gi(@n =) =0
n=1 n=
a Ne? L1
1 N | _ 1 2
52 an)Jr;u:O 5 ;2(% 1)
n=1 =
1 < ~2 1 &
= 5 Z x, sample mean =N Z(wn — f1)° sample variance



Inference for the Gaussian

Maximum likelihood

» Maximum likelihood solutions

1 N
= D
n=1
1 N
~2 AN2
—an::l(xn/‘)

Equivalent to common mean and variance estimators (almost).
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Equivalent to common mean and variance estimators (almost).
» Maximum likelihood ignores parameter uncertainty
» Think of the ML solution for a single observed datapoint



Inference for the Gaussian

Maximum likelihood

» Maximum likelihood solutions

1 N
= D
n=1
1 N
~2 AN2
—N;(xn/‘)

Equivalent to common mean and variance estimators (almost).
» Maximum likelihood ignores parameter uncertainty
» Think of the ML solution for a single observed datapoint

::[]1

(Ol =

A~

» How about Bayesian inference?



Outline

Bayesian inference for the Gaussian



The Rules of Probability

Sum & Product Rule

Sum Rule p(x)
Product Rule p(z,y

) =pl



The Rules of Probability

Sum & Product Rule
Sum Rule p(z) =3, p(z,y)
Product Rule p(z,y) = p(y | z)p(z)

Bayes Theorem

» Using the product rule we obtain



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€




Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8

» Likelihood
p(D|6)



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€
X

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8

> Idea: treat 6 as a random variable under p(6)

» Likelihood

_ p(D|0) - p(0) .



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8
> Idea: treat 6 as a random variable under p(6)

> Infer the conditional distribution of the parameters 8 given Data D using
Bayes theorem.

» Likelihood

2(0]D) — p(D|0) - p(6) .

» Posterior



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8
> Idea: treat 6 as a random variable under p(6)

> Infer the conditional distribution of the parameters 8 given Data D using
Bayes theorem.

» Likelihood

2(0]D) — p(D|0) - p(6) .

posterior o likelihood - prior > Posterior



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8
> Idea: treat 6 as a random variable under p(6)

> Infer the conditional distribution of the parameters 8 given Data D using
Bayes theorem.

» Likelihood
p(D|0) - p(6) _
p@|D) = ———— > Prior
(0]D) (D) |
posterior o likelihood - prior > Posterior

v

Marginal likelihood
(normalization constant)



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8
> Idea: treat 6 as a random variable under p(6)

> Infer the conditional distribution of the parameters 8 given Data D using
Bayes theorem.

v

Likelihood
p(D|6) - p(6)
= — P 1
p(0|D) ng(D7 8) 0 » Prior

posterior o likelihood - prior > Posterior

v

Marginal likelihood
(normalization constant)



Bayesian probability calculus

> Bayes rule is the basis for Bayesian inference and learning.

> Assume we have a model with parameters 0, e.g.

y=0g+60,-x+e¢€

> In maximum likelihood estimation we maximized p(D |0) w.r.t 8
> Idea: treat 6 as a random variable under p(6)

> Infer the conditional distribution of the parameters 8 given Data D using
Bayes theorem.

v

©16) ) Likelihood
p(D|0) - p(6 .
p(@|D) = T,0(D10) - p(6) 46 > Prior

posterior  likelihood - prior

» Posterior

v

Marginal likelihood
(normalization constant)



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p |

» Likelihood:

'D‘,u, H xn|ﬂa‘72)
Do) - p(@
g - 219+

posterior  likelihood - prior

v

v

“““

Likelihood
Prior

Posterior

Marglnal |Ike|lh00d

R Y



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p |

» Likelihood:

N

p(D|p,0° H (zn | poo?)

> Specify normal prior on p:

p(P10) - p(0)

p(D)
posterior  likelihood - prior

p(@|D) =

v

v

“““

Likelihood
Prior

Posterior

Marglnal |Ike|lh00d

R Y



“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean p |
> Likelihood:

N

p(D|p,0° H (zn | poo?)

> Specify normal prior on i p(p) =N (1 | mo,sg)

“““

» Likelihood
p(D]6) - p(6)
0|D) =———— » Prior
p(6]D) B
posterior o likelihood - prior » Posterior
> Marglnal |Ike|lh00d

R Y



“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean p |
> Likelihood:

N

p(D|p,0° H (zn | poo?)

> Specify normal prior on i p(p) =N (1 | mo,sg)

p(@|D) Hﬁ:lN(xn | M?U2) ’ N(N|m07‘9%)

» Likelihood
p(D]6) - p(6)
0|D) =———— » Prior
p(6]D) B
posterior o likelihood - prior » Posterior
> Marglnal |Ike|lh00d

R Y



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p |
> Likelihood:

N

p(D|p,0° H (zn | poo?)

> Specify normal prior on i p(p) =N (1 | mo, 2

p(@|D) Hﬁ:lN(xn | M?U2) ’ N(N|m0753)

> p(D) not needed for MAP estimation (constant in
the parameter).

>
p(D|6) - p(6)
0|D) =————— >
p(0]D) e
posterior  likelihood - prior >
>

Likelihood
Prior

Posterior

Marglnal likelihood

I L Y



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l

p0|D) x TIN_\ N (zn | p,0?) - N (1| mo,s3)

> Likelihood
iy - 2210 »©) r—
— ____ I i
P p(D) i
posterior  likelihood - prior > Posterior
» Marginal likelihood

(normalization constant)



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
pO|D) o TIioy N (@n | p,0®) - N (1| mo,s5)

> take logarithm of the posterior

logp(0|D) =2+ N logN (an | p,0%) + logN (p | mo,sd)

» Likelihood
@p) - 2210 7® . Prior
_ s i
£ p(D) _
posterior o likelihood - prior > Posterior
» Marginal likelihood

(normalization constant)



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
p(0]D) o Ty N (@n | p,0%) - N (u | mo,s3)

> take logarithm of the posterior

logp(0|D) =2+ N logN (an | p,0%) + logN (p | mo,sd)

=7+ —% (27]:;1 10g(27r02) e J%(xn — p)2) —% (log(27roi) + %(,u — m0)2)

» Likelihood
sy - 2210 - r) r—
P B »(D)

> Posterior

posterior  likelihood - prior

v

Marginal likelihood
(normalization constant)



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
p(0]D) o Ty N (@n | p,0%) - N (u | mo,s3)

> take logarithm of the posterior

logp(0|D) =2+ N logN (an | p,0%) + logN (p | mo,sd)

=7+ —é (27]:;1 10g(27r02) e J%(xn — p)2) —% (log(27roi) + %(,u — m0)2)

=7 - =3 (TN Z (@ -0 — Z(u-mo)?)

> Likelihood
p(D|6) - p(9)
p(D)
posterior  likelihood - prior

p(0|D) = » Prior
> Posterior

» Marginal likelihood
(normalization constant)



“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean p Il

DA



“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean p Il

> Take derivative
op(u|D) _
O

DA



“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean p |l

> Take derivative

D) = 1
on (7; o2

(n — 1)) — %m—mo)

DA



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
logp(8]D) = 2"~ =3 ((ZiL; Z(@a — w)?) — & (1 —mo)?)

> Take derivative

> set to zero and solve for puarap

S 1
- (Z —z(@n — #MAP)) = o2 (uaap —mo) =0
0

n=1



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
logp(8|D) = 2"~ —3 (X & (@ —w)?) = & (u—mo)?)

> Take derivative
N
Op(u| D) 1 1
le|D) SO L (= mo)
— o2 30

> set to zero and solve for puarap

— (Z 012( ,uMAP)) — %(MMAP —mp) =0

n=1
N
N 1 1 1
(; - %) parap = o + 3:1 —(@



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
logp(8|D) = 2"~ —3 (X & (@ —w)?) = & (u—mo)?)

> Take derivative

%ﬂ‘p) =-0 %(mn—u))— %(u—mt))

n=1

> set to zero and solve for puarap

Al 1
- (Z —z(@n — #MAP)) = o2 (uaap —mo) =0
n=1 0
N
N 1 1 1
(; - %) UMAP = %mo + 7;1 ;(xn)

5 R
UMAP = mm()‘f‘m;mn



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l

logp(6|D) =7~ 3 (i1 2 (on = 1%) = & (= mo)’)

> Take derivative

%ﬂ‘p) =-0 %(mn—u))— %(u—mt))

n=1

> set to zero and solve for puarap

Al 1
- (Z —z(@n — #MAP)) = o2 (uaap —mo) =0
n=1 0
N
N 1 1 1
(; - %) UMAP = %mo + 7;1 ;(xn)

5 R
UMAP = mm()‘f‘m;mn

2

o
> where 6 = —
S0



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
logp(8|D) = 2"~ —3 (X & (@ —w)?) = & (u—mo)?)

> Take derivative

N
op(u| D 1 1
BUID) (3 L on =) = (= ) 2
n=1 0 > where § = 2
S0
> set to zero and solve for puarap
1 1
— Z;(xn—HMAP) —?(MMAP—mO):O
n=1 0
N
N 1 1 1
A - = —(zn, 5
(02 sg)NMAP ngo+7;02(x ) AP = N—dm“+

5 R
UMAP = mm()"rm;mn



“Bayesian estimation” in the normal distribution

Maximum a posteriori estimation of the mean p 1l
logp(8|D) = 2"~ —3 (X & (@ —w)?) = & (u—mo)?)

> Take derivative

Ap(u| D S| 1
BUID) (3 L on =) = (= ) 2
n=1 0 > where § = 2
S0

> set to zero and solve for puarap > shrinkage parameter

N > regularization
1 1 B
- E ;(xn — pmar) | — %(HMAP —mo) =0 parameter
n=1
N
N 1 ) 1 1
— — 5 | bMAaP = 5mo + — (zn) 0 N
(02 s3 53 7;102 Hamap = o + sl

5 R
UMAP = mm0+m;$n
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» Data
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Bayesian Inference for the Gaussian

Ingredients
» Data

D:{.Z'l,...,(EN}

» Model Hgguss — Gaussian PDF

]. 1 2
N(z|po?)= e 2oz (@H)
V2ro?
0 ={u}

» For simplicity: assume variance o2 is

known.




Bayesian Inference for the Gaussian

Ingredients
» Data

D:{.Z'l,...,.’lj]v}

» Model Hgguss — Gaussian PDF
p(z)
1 1 2
N (z %) = e 27 @1
( | Hs ) v orno? N (2 |p, 0?)
6 = {u}
» For simplicity: assume variance o2 is
known. = z
| 2 leellhood (C.M. Bishop, Pattern Recognition and Machine
N Learning)

p(D|p) = HN(aCn | ,LL,O'Q)

n=1



Bayesian Inference for the Gaussian

Bayes rule

» Combine likelihood with a Gaussian prior over p

p(p) =N (p | mo,sp)

» The posterior is proportional to

p(|D,0?) o< p(D | p, 0?)p(p)



Bayesian Inference for the Gaussian




Bayesian Inference for the Gaussian

1 12(9371:“)2‘| 1 e_ﬁ(u_mO)Z




Bayesian Inference for the Gaussian

| D
N

= H 1 7%(9571*!’«)2 #6 23(# m0)2
n=1 \/W \/ﬂ

. 1 N 1 1 ) 1 ) )
T V2ro2 mexl) _QS(Q)W — 2umg +md) — Tz::;t — 2y + 7))
c1
1/1 N
CQexp{ 2(32+02) <u —2#0 mo+ an )+C3}
0




Bayesian Inference for the Gaussian

| D
N

) | e T
Wy V2mo? \/2ms3

N
1 1
. (112 — 2umg + m3) ~ 5,2 Z (12 = 2pxy, + 22)

V2mo? \/27ms3 (2)
C1
1/1 N 9
CQexp{ 2(8(2)+02) </1, —2/LU moJr an )+C3}
—_——
1/52P mp

» Posterior parameters follow as the new coefficients.




Bayesian Inference for the Gaussian

| D
N

~ 11 I w1 —apemo)?
Wy V2mo? \/2ms3

N
1 1
. (112 — 2umg + m3) ~ 5,2 Z (12 = 2pxy, + 22)

V2mo? \/27ms3 (2)
C1
1/1 N 9
CQexp{ 2(8(2)+02) </1, —2/1/0 moJr an )+C3}
—_——
1/5% mp

» Posterior parameters follow as the new coefficients.
» Note: Posterior has form of normal distribution, thus is normalized




Bayesian Inference for the Gaussian

> Posterior of the mean: p(u|D,0%) «c N (i | mp,sp ), after some

rewriting
o2 Ns% R . 1 N
mPiNs%+02mO+ng+a2’u’ Mfﬁf;x"
1 1 N
Z 22

sp 85 O
» Limiting cases for no and infinite amount of data
[ N=0 N— oo

mp mo 2
2 2
sp 84 0




Bayesian Inference for the Gaussian

Examples

> Posterior p(1| D, o) for increasing data sizes.

(C.M. Bishop, Pattern Recognition and Machine Learning)



Conjugate priors

» It is not chance that the posterior

p(p|D,0%) o< p(D| p, 0%)p(1)

is tractable in closed form for the Gaussian.



Conjugate priors

» It is not chance that the posterior
p(p|D,0%) < p(D | p, 0%)p(1)
is tractable in closed form for the Gaussian.

Conjugate prior

p(0) is a conjugate prior for a particular likelihood p(D | 0) if the posterior
is of the same functional form than the prior.



Conjugate priors

Exponential family distributions

» A large class of probability distributions are part of the exponential
family (all in this course) and can be written as:

p(@|0) = h(z)g(0) exp{0 "u(x)}



Conjugate priors

Exponential family distributions

» A large class of probability distributions are part of the exponential
family (all in this course) and can be written as:

p(z|6) = h(x)g(8) exp{f u(x)}
» For example for the Gaussian:

1 1
p(x|p,0?) = 503 exp{—ﬁ(x2 —2xp 4 p?)}

= h(x)g(0)exp{d u(z)}




Conjugate priors

Exponential family distributions

» A large class of probability distributions are part of the exponential
family (all in this course) and can be written as:

p(@|0) = h(z)g(0) exp{0 "u(x)}

» For example for the Gaussian:

p(z|p,0%) = exp{—3 (w — 2zp+ ()}
Zh(x)g( )exp{a u(z)}

with 6 = < _‘i//‘;; > hz) = ——

u(z) = < r > 9(8) = (—260,)2 exp (ﬁ)

x 2



Conjugate priors
Exponential family distributions

Conjugacy and exponential family distributions

> For all members of the exponential family it is possible to construct a conjugate
prior.

» Intuition: The exponential form ensures that we can construct a prior
that keeps its functional form.
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Exponential family distributions

Conjugacy and exponential family distributions

> For all members of the exponential family it is possible to construct a conjugate
prior.

» Intuition: The exponential form ensures that we can construct a prior
that keeps its functional form.

» Conjugate priors for the Gaussian N (z | p1,0?)
> p(u) =N (u | mo, s5)



Conjugate priors
Exponential family distributions

Conjugacy and exponential family distributions

> For all members of the exponential family it is possible to construct a conjugate
prior.

» Intuition: The exponential form ensures that we can construct a prior
that keeps its functional form.

» Conjugate priors for the Gaussian N (z | p1,0?)
> p(u) =N (u | mo, s5)

1 1
> p( )29(02 | ao,bo)

o2



Conjugate priors
Exponential family distributions

Conjugacy and exponential family distributions

> For all members of the exponential family it is possible to construct a conjugate
prior.

» Intuition: The exponential form ensures that we can construct a prior
that keeps its functional form.

» Conjugate priors for the Gaussian N (z | p1,0?)
> p(u) =N (u | mo, s5)

1 1
> p( )29(02 | ao,bo)

o2
1 , 1
>p(u,§)=N(u|mo, s3)-G §|ao,bo

Gamma distribution

ba
G(x|a,b) = — g% le7bT

I'(a)



Bayesian Inference for the Gaussian

Sequential learning

» Bayes rule naturally leads itself to sequential learning



Bayesian Inference for the Gaussian

Sequential learning

» Bayes rule naturally leads itself to sequential learning

» Assume one by one multiple datasets become available: Dy, ...

p1(6) o< p(D1|0)p(0)
p2(0) < p(D2 | 0)p1(0)



Bayesian Inference for the Gaussian

Sequential learning

» Bayes rule naturally leads itself to sequential learning
» Assume one by one multiple datasets become available: Dq,...,Dg

» Note: Assuming the datasets are independent, sequential updates and
a single learning step yield the same answer.



Outline

Linear Regression



Regression

Noise model and likelihood

» Given a dataset D = {a:n,yn}n 1, where z,, = {z,1,..., 25,5} is S
dimensional, fit parameters @ of a regressor f with added Gaussian
noise:

Yn = f(20;0) + €, where p(e|o?) =N (e]0,0%).

» Equivalent likelihood formulation:

y’X HN yn’f(wna) 2)

n=1



Regression

Choosing a regressor

» Choose f to be linear:

N
Py X)=T[N (ol 2w B+co?)

n=1

» Consider bias free case, ¢ = 0,
otherwise include an additional
column of ones in each x,,.



Regression

Choosing a regressor

» Choose f to be linear:
N
p(y]X)—l_IlN(yn|wn-,3+c,02) 5 _@
» Consider bias free case, ¢ = 0, @
otherwise include an additional N

column of ones in each x,,.

Equivalent graphical model



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\f(yn | - B,0%)

n=1

N
N 1
= 75111271'02 — 2—2_:

Sum of squares



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\/(yn | - B,0%)

n=1

N
N 1
2751n27r0272—z_: —x, - B)?

/

Sum of squares

» The likelihood is maximized when the squared error is minimized.



Linear Regression

Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|6c?) = Zln/\/(yn | - B,0%)

n=1

N
N 1
2751n27r0272—z_: —x, - B)?

/

Sum of squares

» The likelihood is maximized when the squared error is minimized.

» Least squares and maximum likelihood are equivalent.



Linear Regression and Least Squares

& yn
Yy
fan, w)
T r

(C.M. Bishop, Pattern Recognition and Machine Learning)



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry (;

1

dﬁl 20

dﬁz Inp(y|6,0°) =

230

ZC»,L'



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry (;

1N
Inp(y|0,0?) = —Z —x,-0

dﬁz dﬁz 20

» Set gradient w.r.t. 8 to zero



Linear Regression and Least Squares

» Derivative w.r.t a single weight entry (;

d d 1 Y
2\ 2
4z lnp(y‘a,(f )_dﬁi _ﬁ;(yn_xn'o)

» Set gradient w.r.t. 8 to zero

N
Valnp(y|8,0%) = = 3 (4o — wn - Bz =0

= Pum =7



Linear Regression and Least Squares

» Derivative w.r.t. a single weight entry 3;

0
35, nPw18.0%) = 52 2022

n=1
1 N
72

-z, -0)°



Linear Regression and Least Squares

» Derivative w.r.t. a single weight entry 3;

0
aﬂz 1np(y|,@,02)—71 0_2 2_:1 — Ty - /6

L
o2 2 : CP)Ti
» Set gradient w.r.t. 8 to zero

Vplnp(y|B,o° QZ —, Bz, =0

= Bu=(X"X)" 1XT y
—— —

Pseudo inverse



Linear Regression and Least Squares

» Derivative w.r.t. a single weight entry 3;

0
1 2 =35 n
95, np(y|B,0°) 3 02 2—31 Yn — Tn - B)°

1N
- 53— A

» Set gradient w.r.t. 8 to zero

N
1
Vlnp(y|B,0%) = o > (yn— a0 - Bz, =0
n=1

= Bu=(X"X)'X"y
N———’
Pseudo inverse
x1,1 NN .’171, S
» Here, the matrix X is defined as X =
TN,1 NN TN,S
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Course Overview

Probability Theory

Review of probabilities
Random variables

Information and Entropy
Normal distribution

Parameter estimation for the normal distribution
Bayesian inference for the Gaussian
Linear Regression

Summary
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Conclusions
Summary - week 1

>

Probability theory: the language
of uncertainty.

Key rules of probability: sum
rule, product rule.

Bayes rules formes the
fundamentals of learning.
(posterior o likelihood - prior).

The entropy quantifies
uncertainty.

Parameter learning using
maximum likelihood.

Bayesian inference for the
Gaussian.

Linear regression

» Parameter estimation
>



Conclusions
Summary - week 1

>

Probability theory: the language

of uncertainty. Outlook - week 2

Key rules of probability: sum » Reuvisit the (multivariate) normal
rule, product rule. distribution, showing some
Bayes rules formes the useful properties.

fundamentals of learning. » Statistical testing

(posterior o likelihood - prior). » Genome-wide association studies

The entropy quantifies using linear regression

uncertainty. B .
Y » Bayesian linear regression and

Parameter learning using shrinkage
maximum likelihood.

Bayesian inference for the
Gaussian.
Linear regression

» Parameter estimation
>



Conclusions
Summary - week 1

>

Probability theory: the language
of uncertainty.

Key rules of probability: sum
rule, product rule.

Bayes rules formes the
fundamentals of learning.
(posterior o likelihood - prior).
The entropy quantifies
uncertainty.

Parameter learning using
maximum likelihood.

Bayesian inference for the
Gaussian.

Linear regression

» Parameter estimation
>

Outlook - week 2

» Reuvisit the (multivariate) normal
distribution, showing some
useful properties.

» Statistical testing

» Genome-wide association studies
using linear regression

» Bayesian linear regression and
shrinkage
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