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Why probabilistic modeling?

I Inferences from data are intrinsically uncertain.

I Probability theory: model uncertainty instead of ignoring it!

I Applications are not limited to statistical genetics: Machine Learning,
Data Mining, Pattern Recognition, etc.

I Goal of this part of the course
I Overview on probabilistic modeling
I Key concepts
I Focus on Applications in statistical genetics
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Why probabilistic modeling? Example

I Genes measured in yeast
I e.g. Is gene 1 co-expressed with

gene 2?
I Probabilistic models →

probability theory
I This course: linear models

(and kernel methods)

gene2 = c+ gene1 · β + ε

I Is this dependence significant?
I Statistical testing

I Can I predict the level of gene2
observing gene1?

I Take known covariates into
account

I Estimate hidden
covariates/confounders
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Why probabilistic modeling?
Example: Genome-wide association studies

Given:
I Genetics for multiple

individuals
I e.g.: Single nucleotide

polymorphisms (SNPs),
microsatelite markers, ...

I Phenotypes for the same
individuals

I e.g.: disease, height,
gene-expression, ...

Goal:

I Try to find genetic markers,
that explain the variance in
the phenotype.

study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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Why probabilistic modeling?
Example: Genome-wide association studies

Given:
I Genetics for multiple

individuals
I e.g.: Single nucleotide

polymorphisms (SNPs),
microsatelite markers, ...

I Phenotypes for the same
individuals

I e.g.: disease, height,
gene-expression, ...

Goal:

I Try to find genetic markers,
that explain the variance in
the phenotype.

study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).
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relationship between two
measured quantities that renders
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I Can be beneficial
e.g.: Linkage

I Can be harmful
e.g.: Population structure

correlation

statistical
dependence

∗Oxford Dictionary of Statistics
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Further reading, useful material

I Christopher M. Bishop: Pattern Recognition and Machine learning.
I Good background, covers most of the machine learning used in this

course and much more!
I Substantial parts of this tutorial borrow figures and ideas from this

book.

I David J.C. MacKay: Information Theory, Learning and Inference
I Very worthwhile reading, not quite the same quality of overlap with the

lecture synopsis.
I Freely available online.
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Probabilities

I Probabilities describe likeliness of the outcomes of an experiment

I experiment

I sample space Ω,
P (Ω) = 1

I event
Subsets of Ω

I pick a box and
then take a ball
at random

I Ω =
{RG,RO,BG,BO}

I A =
{RG,RO},
B = {RO,BO}

I coin flip

I Ω = {H,T}
I A = {H},
B = {T}

I gene expression
measurement

I Ω = ]−∞,∞[

I A = ]−∞, 3],
B = {2}

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Probability function

I Probability functions are
non-negative, P (A) ≥ 0

I If A and B are disjoint
I P (A∪B) = P (A)+P (B)

(union)
I P (A ∩B) = 0

(intersection)

I Probabilities sum to 1 over
union of all possible disjoint
events A1 ∪A2 ∪ . . .

I P (A1 ∪A2 ∪ . . . ) = P (A1) + P (A2) + · · · = P (Ω) = 1
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Complement and DeMorgan’s Laws

I The complement of A is
denoted by Ac

I Ωc = ∅

P (Ac) = 1− P (A)

P (A ∩Ac) = 0

P (A ∪Ac) = 1

I DeMorgan’s Laws:

I (A ∪B)c = Ac ∩Bc

I (A ∩B)c = Ac ∪Bc
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Events

I If A is a subset of B

I A ∪B = B

I P (A ∪B) = P (B)

I A ∩B = A

I P (A ∩B) = P (A)



Products of sample spaces

I Typically we don’t perform
only a single experiment

I Repeated experiments
I Flip a coin N times
I Measure a phenotype at

different time points

I Multiple experiments
I Measure expression of

multiple genes

I Sample space is product of
sample spaces

I Ω = Ω1 × Ω2 × · · · × ΩN
I number of elements

multiply

I Experiments can be
independent

I Flip a coin twice
I P (H,H) = P (H)2

I or dependent
I Dependence of

measurements over time
I Two genes that are

co-regulated
I P (g1 = x, g2 = y) 6=
P (g1 = x) · P (g2 = y)
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Conditional probability

I Some times occurrence of
one event yields information
about another one

I disjoint events

I subsets

I dependent measurements

I P (A |B) =
P (A ∩B)

P (B)

I P (A∩B) = P (A |B) ·P (B)
(Product rule)
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Independence

I The three following
statements are equivalent
and imply independence of
A and B:

I P (A |B) = P (A),
I P (B |A) = P (B),
I P (A∩B) = P (A) ·P (B).



Random variables

I Alternatively to defining sets of events we can define random variables of
interest.

I A random variables X is defined over a set of possible values X

I Number of orange balls in N trials
(discrete)
X = N+

0

I Number of H coin flips before first T
(discrete)
X = N+

0

I Sum of two dice rolls (discrete)
X = {2, 3, . . . , 12}

I Gene expression at time t (continuous)
X = R

I Average gene-expression measurement over
N samples (continuous)
X = R

I Survival time (continuous)
X = R+

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Probabilities and random variables

I Let X be a random variable,
defined over a set X or
measurable space.

I P (X = x) denotes the
probability that X takes
value x, short p(x).

I Probability mass function
(discrete)

I Probability density
function (continuous)

I Probabilities are
non-negative,
P (X = x) ≥ 0

I Probabilities sum to one

∑
x∈X

p(x) = 1

∫
x∈X

p(x)dx = 1
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Expected values and variances
Moments

Expected value

I Average value of the random variable X

I sample mean X̄ of a data sample drawn
from p(x).

X̄ =
1

N

N∑
n=1

xn

I Expected value E [X] is the first moment
of P (X)

I discrete

E [X] =
∑
x∈X

x · p(x)

I continuous

E [X] =

∫
x∈X

x · p(x)dx

Variance σ2

I Measures average squared deviation from
the mean of X.

I sample variance of a data sample drawn
from p(x).

1

N

N∑
n=1

(
xn − X̄

)2
I Second centralized moment of X

I square of the standard deviation σ

I discrete

σ2(X) = E
[
(X − E [X])2

]
=
∑
x∈X

(x− E [X])2 · p(x)

I continuous

σ2(X) =

∫
x∈X

(x− E [X])2 · p(x)dx
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Distributions of multiple random variables

Joint Probability

P (X = xi, Y = yj) =
nij
N

Marginal Probability

P (X = xi) =
ci
N

Conditional Probability

P (Y = yj |X = xi) =
nij
ci

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Information and Entropy

I Information is the reduction of uncertainty.

I Entropy H(X) is the quantitative description of
uncertainty

I H(X) = 0: certainty about X.
I H(X) maximal if all possibilities are equal

probable.
I Uncertainty and information are additive.

I These conditions are fulfilled by the entropy
function:

H(X) = −
∑
x∈X

P (X = x) logP (X = x)

I Entropy is a vector-valued function (input is a
probability distribution)

example:
binary entropy function

(D. MacKay, Information Theory,

Inference, and Learning Algorithms)
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Definitions related to entropy and information

I Entropy is the average surprise

H(X) =
∑
x∈X

P (X = x) (− logP (X = x))︸ ︷︷ ︸
surprise

I Conditional entropy of X given Y = y

H(X |Y = y) = −
∑
x∈X

P (X = x |Y = y) logP (X = x |Y = y)

I Conditional entropy of X given Y is the average (over Y ) conditional
entropy of X given Y = y

H(X |Y ) =
∑
y∈Y

P (Y = y)

(
−
∑
x∈X

P (X = x |Y = y) logP (X = x |Y = y)

)

= −
∑

x∈X ,y∈Y
P (X = x, Y = y) logP (X = x |Y = y)
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Definitions related to entropy and information

I Chain rule

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X |Y )

I Mutual information

I(X;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

I I(X;Y ) = I(Y ;X)
I average reduction in uncertainty about X when learning value of Y

(and vice versa)

(D. MacKay, Information Theory, Inference, and Learning Algorithms)
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Definitions related to entropy and information
Independence of X and Y

I Under independence of X and Y , p(x, y) = p(x)p(y).

I H(X,Y ) = H(X) +H(Y )

H(X,Y ) = −
∑

x∈X ,y∈Y

P (X = x)P (Y = y) log(P (X = x)P (Y = y))

=−
∑

x∈X ,y∈Y

P (X = x)P (Y = y) logP (X = x) + P (X = x)P (Y = y) logP (Y = y)

= −
∑
x∈X

P (X = x) logP (X = x)−
∑
y∈Y

P (Y = y) logP (Y = y) = −
∑
x∈X

P (X = x) logP (X = x)−
∑
y∈Y

P (Y = y) logP (Y = y)

I I(X;Y ) = H(X) +H(Y )− H(X,Y )︸ ︷︷ ︸
H(X)+H(Y )

= 0

I H(X |Y ) = H(X)

H(X |Y ) = −
∑

x∈X ,y∈Y

P (X = x)P (Y = y) logP (X = x |Y = y)︸ ︷︷ ︸
P (X=x)

= −
∑
x∈X

P (X = x) logP (X = x)
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Entropy in action
The optimal weighing problem

I Given 12 balls, all equal except for one that is lighter or heavier.
I What is the ideal weighting strategy and how many weighings are

needed to identify the odd ball and tell if it is lighter or heavier?



Kulback-Leibler divergence

I For two probability distributions over X, P (X)
and Q(X), the KL divergence (or relative
Entropy) is defined as

DKL(P‖Q) =
∑
x∈X

P (X = x) log
P (X = x)

Q(Y = y)

I DKL(P, ‖Q) 6= DKL(Q‖‖P )
(not symmetric)

I DKL(P, ‖Q) is strictly convex.

I DKL(P‖Q) ≥ 0 (Gibb’s inequality)

I DKL(P‖Q) = 0 if and only if P = Q.

I KL divergence will be useful as scoring function
for approximations Q of probability
distributions P that are intractable.

Definition of convexity:

I f(x) is convex over interval
(a, b), if ∀x1, x2 ∈ (a, b) and
0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2)

≤ λf(x1) + (1− λ)f(x2)

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)
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I f(x) is convex over interval
(a, b), if ∀x1, x2 ∈ (a, b) and
0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2)

≤ λf(x1) + (1− λ)f(x2)

(D. MacKay, Information Theory, Inference, and

Learning Algorithms)



Probability distributions

I Normal distribution (Gaussian distribution)

p(x |µ, σ2) = N
(
x | µ, σ2

)
=

1√
2πσ2

· e−
1

2σ2
(x−µ)2
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Probability distributions
continued...

I Bernoulli

p(x | θ) = θx(1− θ)1−x
I Gamma

p(x | a, b) =
ba

Γ(a)
xa−1e−bx
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Probability distributions
The Gaussian revisited

I Gaussian PDF

N
(
x | µ, σ2

)
=

1√
2πσ2

e−
1

2σ2
(x−µ)2

I Positive: N
(
x | µ, σ2

)
> 0

I Normalized:
∫ +∞

−∞
N (x | µ, σ ) dx = 1 (check)

I Expectation:

< x >=

∫ +∞

−∞
N
(
x | µ, σ2

)
xdx = µ

I Variance: Var[x] =< x2 > − < x >2

= µ2 + σ2 − µ2 = σ2
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Inference for the normal distribution
Ingredients

I Data sampled from unknown
distribution p(D |θ0)

D = {x1, . . . , xN} ∼ p(D |θ0)

I Model HGauss – normal PDF

N
(
x | µ, σ2

)
=

1√
2πσ2

e−
1

2σ2
(x−µ)2

θ = {µ, σ2}

I Likelihood

p(D |θ) =

N∏
n=1

N
(
xn | µ, σ2

)
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Inference for the normal distribution
Ingredients

I Data sampled from unknown
distribution p(D |θ0)
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(C.M. Bishop, Pattern Recognition and Machine

Learning)



Inference for the normal distribution
Maximum likelihood

I Likelihood

p(D |θ) =

N∏
n=1

N
(
xn | µ, σ2

)
I Maximum likelihood

I Chose parameters µ̂ and σ̂2 that
maximize the likelihood of D

θ̂ = argmax
θ

p(D |θ)

x

p(x)

xn

N (xn|µ, σ2)

(C.M. Bishop, Pattern Recognition and Machine

Learning)
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Maximum likelihood estimation in the normal distribution

I Data sample D of size N
modeled by a univariate
normal distribution

I Likelihood of the data under
the model p(D |µ, σ2):

N∏
n=1

N
(
xn | µ, σ2

)

=

N∏
n=1

1√
2πσ2

· e−
1

2σ2
(x−µ)2

I Equivalently maximize the
log-Likelihood
log p(D |µ, σ2) = L

(
µ, σ2

)
L
(
µ, σ2

)
=

N∑
n=1

logN
(
xn | µ, σ2

)
=

N∑
n=1

−1

2
log(2πσ2)− 1

2σ2
(xn − µ)2
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Maximum likelihood estimation in the normal distribution

L
(
µ, σ2) =

N∑
n=1

−1

2
log(2πσ2)− 1

2σ2
(xn − µ)2

I Take the derivative of L
(
µ, σ2) with

respect to µ:

∂L
(
µ, σ2

)
∂µ

=

− 1

σ2

N∑
n=1

(xn − µ)

I set to zero and solve for µ̂:

− 1

σ2

N∑
n=1

(xn − µ̂) = 0

− 1

σ2
(

N∑
n=1

xn) +
N

σ2
µ̂ = 0

µ̂ =
1

N

N∑
n=1

xn sample mean

I Take the derivative of L
(
µ̂, σ2) with

respect to σ2:

∂L
(
µ̂, σ2
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2σ2
+
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2σ4
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sample variance
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Inference for the Gaussian
Maximum likelihood

I Maximum likelihood solutions

µ̂ =
1

N

N∑
n=1

xn

σ̂2 =
1

N

N∑
n=1

(xn − µ̂)2

Equivalent to common mean and variance estimators (almost).
I Maximum likelihood ignores parameter uncertainty

I Think of the ML solution for a single observed datapoint x1

µ̂ = x1

σ̂2 = (x1 − µ̂)2 = 0

I How about Bayesian inference?
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The Rules of Probability

Sum & Product Rule

Sum Rule p(x) =
∑

y p(x, y)

Product Rule p(x, y) = p(y |x)p(x)

Bayes Theorem

I Using the product rule we obtain

p(y |x) =
p(x | y)p(y)

p(x)

p(x) =
∑
y

p(x | y)p(y)
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Bayesian probability calculus

I Bayes rule is the basis for Bayesian inference and learning.

I Assume we have a model with parameters θ, e.g.

y = θ0 + θ1 · x+ ε
X

Y

x*

I In maximum likelihood estimation we maximized p(D |θ) w.r.t θ

I Idea: treat θ as a random variable under p(θ)

I Infer the conditional distribution of the parameters θ given Data D using
Bayes theorem.

p(θ | D)

=

p(D |θ) · p(θ)

p(D)

posterior ∝ likelihood · prior

I Likelihood

I Prior

I Posterior

I Marginal likelihood
(normalization constant)
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“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean µ I

I Likelihood:

p(D |µ, σ2) =

N∏
n=1

N
(
xn | µ, σ2

)
I Specify normal prior on µ:

p(µ) = N
(
µ | m0, s

2
0

)
p(θ | D) ∝ ∏N

n=1N
(
xn | µ, σ2

)
· N

(
µ | m0, s

2
0

)

I p(D) not needed for MAP estimation (constant in
the parameter).
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“Bayesian estimation” in the normal distribution
Maximum a posteriori estimation of the mean µ II

log p(θ | D) = Z′ − − 1
2

(
(
∑N
n=1

1
σ2 (xn − µ)2)− 1

s20
(µ−m0)2

)

I Take derivative

∂p(µ | D)

∂µ
=

− (

N∑
n=1

1

σ2
(xn − µ))− 1

s20
(µ−m0)

I set to zero and solve for µMAP

−

(
N∑
n=1

1

σ2
(xn − µMAP )

)
− 1

s20
(µMAP −m0) = 0

(
N

σ2
− 1

s20

)
µMAP =

1

s20
m0 +

N∑
n=1

1

σ2
(xn)

µMAP =
δ

N − δm0 +
1

N − δ

N∑
n=1

xn

I where δ =
σ2

s0
I shrinkage parameter
I regularization

parameter

µMAP =
δ

N − δm0 +
N

N − δ µ̂
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Bayesian Inference for the Gaussian
Ingredients

I Data

D = {x1, . . . , xN}

I Model HGauss – Gaussian PDF

N
(
x | µ, σ2

)
=

1√
2πσ2

e−
1

2σ2
(x−µ)2

θ = {µ}
I For simplicity: assume variance σ2 is

known.

I Likelihood

p(D |µ) =

N∏
n=1

N
(
xn | µ, σ2

)
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Ingredients

I Data
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(C.M. Bishop, Pattern Recognition and Machine

Learning)



Bayesian Inference for the Gaussian
Bayes rule

I Combine likelihood with a Gaussian prior over µ

p(µ) = N
(
µ | m0, s

2
0

)
I The posterior is proportional to

p(µ | D, σ2) ∝ p(D |µ, σ2)p(µ)



Bayesian Inference for the Gaussian

p(µ | D, σ2) ∝ p(D |µ, σ2) · p(µ)

=

[
N∏
n=1

1√
2πσ2

e−
1

2σ2
(xn−µ)2

]
1√
2πs20

e
− 1

2s20
(µ−m0)

2

=
1√

2πσ2

N 1√
2πs20︸ ︷︷ ︸

C1

exp

[
− 1

2s20
(µ2 − 2µm0 +m2

0)− 1

2σ2

N∑
n=1

(µ2 − 2µxn + x2n)

]

= C2 exp

[
− 1

2

(
1

s20
+
N

σ2

)
︸ ︷︷ ︸

1/s2P

(
µ2 − 2µ σ̂(

1

s20
m0 +

1

σ2

N∑
n=1

xn)︸ ︷︷ ︸
mP

)
+ C3

]

I Posterior parameters follow as the new coefficients.

I Note: Posterior has form of normal distribution, thus is normalized
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Bayesian Inference for the Gaussian

I Posterior of the mean: p(µ | D, σ2) ∝ N (µ | mP , sP ), after some
rewriting

mP =
σ2

Ns20 + σ2
m0 +

Ns20
Ns20 + σ2

µ̂, µ̂ =
1

N

N∑
n=1

xn

1

s2P
=

1

s20
+
N

σ2

I Limiting cases for no and infinite amount of data

N = 0 N →∞
mP m0 µ̂
s2P s20 0



Bayesian Inference for the Gaussian
Examples

I Posterior p(µ | D, σ2) for increasing data sizes.

N = 0

N = 1

N = 2

N = 10

−1 0 1
0

5

(C.M. Bishop, Pattern Recognition and Machine Learning)



Conjugate priors

I It is not chance that the posterior

p(µ | D, σ2) ∝ p(D |µ, σ2)p(µ)

is tractable in closed form for the Gaussian.

Conjugate prior

p(θ) is a conjugate prior for a particular likelihood p(D | θ) if the posterior
is of the same functional form than the prior.
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Conjugate priors
Exponential family distributions

I A large class of probability distributions are part of the exponential
family (all in this course) and can be written as:

p(x |θ) = h(x)g(θ) exp{θ>u(x)}

I For example for the Gaussian:

p(x |µ, σ2) =
1

2πσ2
exp{− 1

2σ2
(x2 − 2xµ+ µ2)}

= h(x)g(θ)exp{θ>u(x)}

with θ =

(
µ/σ2

−1/2σ2

)
, h(x) =

1√
2π

u(x) =

(
x
x2

)
, g(θ) = (−2θ2)

1/2 exp

(
θ21
4θ2

)
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Conjugate priors
Exponential family distributions

Conjugacy and exponential family distributions

I For all members of the exponential family it is possible to construct a conjugate

prior.

I Intuition: The exponential form ensures that we can construct a prior
that keeps its functional form.

I Conjugate priors for the Gaussian N
(
x | µ, σ2

)
I p(µ) = N

(
µ | m0, s

2
0

)
I p(

1

σ2
) = G

(
1

σ2
| a0, b0

)
.

I p(µ,
1

σ2
) = N

(
µ | m0, s

2
0

)
· G
(

1

σ2
| a0, b0

)

Gamma distribution

G(x | a, b) =
ba

Γ(a)
xa−1e−bx
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Bayesian Inference for the Gaussian
Sequential learning

I Bayes rule naturally leads itself to sequential learning

I Assume one by one multiple datasets become available: D1, . . . ,DS

p1(θ) ∝ p(D1 |θ)p(θ)

p2(θ) ∝ p(D2 |θ)p1(θ)

. . .

I Note: Assuming the datasets are independent, sequential updates and
a single learning step yield the same answer.
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Regression
Noise model and likelihood

I Given a dataset D = {xn, yn}Sn=1, where xn = {xn,1, . . . , xn,S} is S
dimensional, fit parameters θ of a regressor f with added Gaussian
noise:

yn = f(xn;θ) + εn where p(ε |σ2) = N
(
ε | 0, σ2

)
.

I Equivalent likelihood formulation:

p(y |X) =
N∏
n=1

N
(
yn | f(xn;θ), σ2

)



Regression
Choosing a regressor

I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn | xn · β + c, σ2

)
I Consider bias free case, c = 0,

otherwise include an additional
column of ones in each xn.
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Linear Regression
Maximum likelihood

I Taking the logarithm, we obtain

ln p(y |θσ2) =

N∑
n=1

lnN
(
yn | xn · β, σ2

)
= −N

2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn − xn · β)2︸ ︷︷ ︸
Sum of squares

I The likelihood is maximized when the squared error is minimized.

I Least squares and maximum likelihood are equivalent.
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Linear Regression and Least Squares

y

x

f (xn , w )

y
n

xn

(C.M. Bishop, Pattern Recognition and Machine Learning)

E(β) =
1

2

N∑
n=1

(yn − xn · β)2



Linear Regression and Least Squares

I Derivative w.r.t a single weight entry βi

d

dβi
ln p(y |θ, σ2) =

d

dβi

[
− 1

2σ2

N∑
n=1

(yn − xn · θ)2

]

I Set gradient w.r.t. β to zero

∇β ln p(y |β, σ2) =
1

σ2

N∑
n=1

(yn − xn · β)x>n = 0

=⇒ βM =?
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I Here, the matrix X is defined as X =

 x1,1 . . . x1, S
. . . . . . . . .
xN,1 . . . xN,S
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Conclusions
Summary - week 1

I Probability theory: the language
of uncertainty.

I Key rules of probability: sum
rule, product rule.

I Bayes rules formes the
fundamentals of learning.
(posterior ∝ likelihood · prior).

I The entropy quantifies
uncertainty.

I Parameter learning using
maximum likelihood.

I Bayesian inference for the
Gaussian.

I Linear regression
I Parameter estimation
I

Outlook - week 2

I Revisit the (multivariate) normal
distribution, showing some
useful properties.

I Statistical testing

I Genome-wide association studies
using linear regression

I Bayesian linear regression and
shrinkage
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