
Current Topics
in Computational Biology

IX: Clustering and 
mixture models

Christoph Lippert, PhD



Reference material

• C.M. Bishop: Pattern recognition and Machine Learning, 
Cambridge University Press, 2006
• chapter 9 

• (chapter 2)



Clustering

• Class discovery

• Given a set of objects, group them into clusters 
(classes that are unknown beforehand)

• Unsupervised learning (no labels y)

Examples:

• Cluster images into categories

• Cluster patient data to find disease subtypes



What is clustering?

• Supervised versus unsupervised learning
• general inference problem: given 𝑥𝑖, predict 𝑦𝑖 by learning a function 

𝑦 = 𝑓(𝑥)

• training set: set of examples (𝑥𝑖; 𝑦𝑖) where
𝑦𝑖 = 𝑓 𝑥𝑖 + 𝜖𝑖

(but 𝑓 is still unknown!)

• test set: new set of data points 𝑥𝑖, where 𝑦𝑖 is unknown
• Supervised:

• use training data to infer your model, then apply this model to the test data

• Unsupervised:
• no training data, learn model and apply it directly on the test data



K-means

Objective:

• Partition the dataset into K clusters such that the distance of each 
point to its cluster mean is minimized

where

• 𝑟𝑛𝑘 ∈ 0,1 is a cluster indicator

• 𝜇𝑘 is the cluster mean



K-means

1. Initialize cluster means

2. Assign each point to the 
cluster whose mean is 
closest to the point

3. Re-compute the cluster 
means

4. If any point changed its 
cluster membership: 
Repeat from step 2



K-means

E-step:

Assign each point to the cluster 
whose mean is closest to the point

= minimize J given all 𝜇𝑘 w.r.t. all 𝑟𝑛𝑘

M-step:

Re-compute the cluster means

= minimize J given all 𝑟𝑛𝑘 w.r.t. all 𝜇𝑘
Set derivative of 𝐽 w.r.t. 𝜇 to zero and solve:

(=cluster mean)



K-means

Things to note
• K-means is still the state-of-the-art method for most 

clustering tasks
• When proposing a new clustering method, one should 

always compare to K-means.
• The algorithm always converges

• In each step the objective J is reduced or stays the same 
(=convergence)

• algorithm has several setbacks:
• It is order-dependent.
• Its results depends on the initialization of the clusters.
• Its result may be a local optimum, not the global optimal solution.

E-step

M-step



K-means 
Image segmentation

• Represent each pixel as RGB

• Use K-means to cluster pixels

• Clusters represent homogenous 
segments of the image

• Drawbacks:
• Ignores spatial information



Mixture density estimation

• Given data 𝑥𝑖
• estimate distribution 𝑝(𝑥)

• e.g. estimate Gaussian using 
maximum likelihood (left)
• Might be too simple

• More complex alternative: mixture
of multiple Gaussians (right)

• Problem:
• How to assign data points to individual 

Gaussians?
• Similar to clustering



Mixture distributions

• Superposition of weighted base 
distributions 𝑝𝑘

𝑝 𝑥 =  

𝑘=1

𝐾

𝜋𝑘𝑝𝑘(𝑥)

• Individual weighted distributions

• Sum (mixture)

• Mixing coefficients 𝜋𝑘 ≥ 0 • Example: mixture of Gaussians



Mixture distributions

• Superposition of weighted
distributions
• Individual weighted distributions

• Sum (mixture)

• Mixing coefficients 𝜋𝑘 ≥ 0

• Mixture distribution is normalized

∫ 𝑝 𝑥 𝑑 𝑥 = 1
• As individual Gaussians are normalized:

and

• Example: mixture of Gaussians



Mixture distributions are hierarchical models

• Marginal density p(x)

• Hierarchical model
• Sample z (cluster)

• Sample x given z

• Example: mixture of Gaussians

Prior of component z Conditional distribution 
of x given component z



Mixtures of Gaussians

• Mixtures of Gaussians can approximate 
arbitrarily complex distributions 

• Marginal density p(x)

• Hierarchical model
• Sample z (cluster)

• Sample x given z

Prior of component z Conditional distribution 
of x given component z

(a) 3 base components with priors
(b) Contours of marginal density
(c) Marginal density in 3D 



Mixtures of Gaussians
Inference

• Given data {𝑥1, … , 𝑥𝑁}

• Can we infer z given x?

• Use Bayes Theorem!

𝑝 𝑧 𝑥 =
𝑝 𝑧 𝑝 𝑥 𝑧

𝑝(𝑥)

Prior of component z Conditional distribution 
of x given component z

(a) True generating components
(b) Observed data (z unknown)



• Write z as binary vector of length k
• Exactly 1 entry is one, others 0
• The probability of each value being 1 equals 𝜋𝑘

• In this form 𝑝(𝑧) can be written as

• The conditional of x given a particular value of z as

• The full conditional as

Mixtures of Gaussians
Inference

Prior of component z Conditional distribution 
of x given component z



Mixtures of Gaussians
Inference

• Use Bayes Theorem!

𝑝 𝑧 𝑥 =
𝑝 𝑧 𝑝 𝑥 𝑧

𝑝(𝑥)

Prior of component z Conditional distribution 
of x given component z

(a) True generating components
(b) Observed data (z unknown)

responsibilities



Mixtures of Gaussians
Inference

• Use Bayes Theorem!

𝑝 𝑧 𝑥 =
𝑝 𝑧 𝑝 𝑥 𝑧

𝑝(𝑥)

Prior of component z Conditional distribution 
of x given component z

(a) True generating components
(b) Observed data (z unknown)
(c) Inferred responsibilities

responsibilities

Done?



Maximum likelihood estimation

• Log likelihood

• Estimates for all parameters are required
𝜋𝑘 , 𝜇𝑘 , Σ𝑘

• Could use gradient-based optimization to 
maximize the likelihood

• Alternative: the EM algorithm

Graphical model for N
data points



Expectation-maximization algorithm
M-step: component mean estimation

• Log likelihood

• Derivative w.r.t. 𝝁𝑘:

• Solving for 𝝁𝑘

-1

where

Multiplying both sides by 𝚺𝑘
to cancel 𝚺𝑘

−1

scalar (note that we hide the dependency on 𝝁𝑘)

sample average weighted by responsibilities for 𝑘𝑡ℎ component



Expectation-maximization algorithm
M-step: component variance estimation

• Log likelihood

• Solving for 𝚺𝑘

sample variance weighted by responsibilities for 𝑘𝑡ℎ component

where



Expectation-maximization algorithm
M-step: mixing coefficients estimation

• Log likelihood

• Use Lagrange multiplier 𝜆 to enforce constraint

• Derivative w.r.t. 𝜋𝑘

• Solve for 𝜋𝑘

Constraint on 𝜋𝑘: 

(where 𝜆 = −𝑁)



Expectation-maximization algorithm
putting things together

1. E step

2. M step

3. Evaluate the log likelihood

4. Iterate if log likelihood has 
increased

Compute responsibilities

Maximize likelihood 
given the 

responsibilities



Illustration of the EM algorithm

• Solution of K-means:


