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Reference material

* C.M. Bishop: Pattern recognition and Machine Learning,
Cambridge University Press, 2006
e chapter 9
* (chapter 2)



Clustering

* Class discovery

* Given a set of objects, group them into clusters
(classes that are unknown beforehand)

* Unsupervised learning (no labels y)
Examples:

* Cluster images into categories

* Cluster patient data to find disease subtypes
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What is clustering?

* Supervised versus unsupervised learning
* general inference problem: given x;, predict y; by learning a function
y=f(x)
* training set: set of examples (x;; y;) where
yi = f(x) +¢€
(but f is still unknown!)
* test set: new set of data points x;, where y; is unknown

e Supervised:
e use training data to infer your model, then apply this model to the test data

* Unsupervised:
* no training data, learn model and apply it directly on the test data



K-means

Objective:

e Partition the dataset into K clusters such that the distance of each
point to its cluster mean is minimized

N
J = Z k|| Xn — ;L;ﬁHE
=1k

n=1 k=1

where
* 1, € {0,1}is a cluster indicator
* U is the cluster mean



K-means o

Initialize cluster means

Assign each point to the |«
cluster whose mean is
closest to the point of

Re-compute the cluster

means

If any point changed its
cluster membership:
Repeat from step 2




K-means

N K
J = Z Z-r'nkﬂxn — ;L;CHQ

n=1 k=1
E-step: M-step:
Assign each point to the cluster Re-compute the cluster means
whose mean is closest to the point
= minimize J given all 7, w.r.t. all y
o _ Set derivative of | w.r.t. u to zero and solve:
= minimize J given all u;, w.r.t. all 7 N
2 2 Z Ik (Xn — ) =0
n=1

~_J1 ifk=argmin; |xp — p;
Fnk = X
0 otherwise.

K. — : =cluster mean
Zn Tnk ( )




K-means

Things to note

 K-means is still the state-of-the-art method for most
clustering tasks

* When proposing a new clustering method, one should
always compare to K-means.

* The algorithm always converges
* In each step the objective J is reduced or stays the same
(=convergence)
* algorithm has several setbacks:
* Itis order-dependent.
* Its results depends on the initialization of the clusters.
* Its result may be a local optimum, not the global optimal solution.
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K-means

Image segmentation

Original image

* Represent each pixel as RGB
* Use K-means to cluster pixels

* Clusters represent homogenous
segments of the image

* Drawbacks:
* |gnores spatial information



Mixture density estimation

Given data x;
estimate distribution p(x)

e.g. estimate Gaussian using
maximum likelihood (left)

* Might be too simple

More complex alternative: mixture
of multiple Gaussians (right)

Problem:

* How to assign data points to individual
Gaussians?

e Similar to clustering
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Mixture distributions

e Superposition of weighted base p(z)a
distributions P,

p(x) = Z T P (X)

k=1
* Individual weighted distributions
* Sum (mixture)
* Mixing coefficients T, = 0 * Example: mixture of Gaussians

>
T

K

p(x) = Z TN (X[ g, 2k)

k=1



Mixture distributions

* Superposition of weighted p(z)a
distributions
* Individual weighted distributions
e Sum (mixture)
* Mixing coefficients T, = 0

-
€T

e Mixture distribution is normalized

Jp(x)dx=1  Example: mixture of Gaussians

 As individual Gaussians are normalized:
K
K

0<mp <1 and Z =1 p(x) = Z TN (x| g, 2 )

k=1
k=1



Mixture distributions are hierarchical models

* Marginal density p(x) p(2)a

K
p(x) = ZI’(ZJP(X|Z) = Z TN (x|, i)
Z k=1

Prior of component z Conditional distribution
of x given component z >

* Example: mixture of Gaussians
* Hierarchical model ,

* Sample z (cluster) p(x) =Y mN (x|, Ti)
* Sample x given z X k=1



Mixtures of Gaussians

* Marginal density p(x) * Mixtures of Gaussians can approximate
' arbitrarily complex distributions

K
p(x) =) p(z)p(x[z) = Y TN (x|py, T)
Z k=1

/ \ r ||

Prior of component z Conditional distribution <« )
. 05¢ ). 02 051
of x given component z @

0.5

 Hierarchical model

o Sample 7 (cIuster) (a) 3 base componen.ts with p.riors
(b) Contours of marginal density

* Sample x given z X (c) Marginal density in 3D



Mixtures of Gaussians

Inference p(x) =) p2)p(xz) = TN (x|, Ti)
Z k=1
* Given data {x{, ..., Xy} / \
. . 5 Prior of component z Conditional distribution
e Can we infer z given x: of X given component z

* Use Bayes Theorem! | |

05+ & .:;‘. hﬁ..- 1 05
p(z|x) = p(z)p(x|2) i
p(x) |

0 0.5 1 0 0.5 1

(a) True generating components
(b) Observed data (z unknown)



Mixtures of Gaussians

Inference p(x) =) plz)p(x|z) =

* Write z as binary vector of length k

Exactly 1 entry is one, others O Prior of component 2
The probability of each value being 1 equals

p(ze = 1) = mg

In this form p(z) can be written as
K

p(z) = H Tk

k=1
The conditional of x given a particular value of z as

p(x|2r = 1) = N(x|pp, 2i)
The full conditional as

K
p(x[z) = | [NV (el gy, Zr)*
k=1

K

Z TN (x| p, 2 )

k=1

Conditional distribution
of x given component z



Mixtures of Gaussians

K
Inference p(x) =Y p(2)p(xz) = Y mN (x|, k)
Z k=1
* Use Bayes Theorem! / \
p (Z)p (x | Z) Prior of component z Conditional distribution
14, (le) — of x given component z
p(x)
lr (a) 1
p(z = 1)p(x|z = " 5,'°.'
Y(zk) = plzr =1x) = ;:,( b (x| ) 05 = f 10
Zp(:j =Up(x[z=1) | |
7=1 . . ‘ . . .
0 0.5 1 0 0.5 1
responsibilities TN (x| g, )
— K"
Z ’?ij-’\-"’(xhbj. ) (a) True generating components

=1 (b) Observed data (z unknown)



Mixtures of Gaussians

Inference

* Use Bayes Theorem!
p(z)p(x|z)

p(x)

p(z|x) =

v(zk) = plzr = 1|x)

\ Zp(:j = 1)p(x|z; = 1)

responsibilities

Prior of component z

Conditional distribution

of x given component z
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(c)

(a) True generating components

(b) Observed data (z unknown)

(c) Inferred responsibilities




Maximum likelihood estimation

* Log likelihood

Inp(X|m, @, 3) E 111{ E TN (x| g 2k) } ‘
n= Xn
N

e Estimates for all parameters are required
Tk, Uiy 2

Graphical model for N
data points

* Could use gradient-based optimization to
maximize the likelihood

e Alternative: the EM algorithm



Expectation-maximization algorithm

M-step: component mean estimation
* Log likelihood
Inp(X|m, pu, X) Z In {Z TN (X | 1 E;)}

* Derivative w.r.t. u,:
Multiplying both sides by X,

TN (Xn | py, . 2 ] to cancel X1
E : Tl| ks ) Ekl(){- o ﬁ’k) k
Z 5\ Kn |P—" > )

v(z n.k) scalar (note that we hide the dependency on u;)

* Solving for u,

M = N

N N
]_ T
Z g (-:n:’c)xn where Ny = Z B (-:nk)
k n=1 n=1

sample average weighted by responsibilities for ks, component



Expectation-maximization algorithm

M-step: component variance estimation

* Log likelihood
N K
Inp(X|m, pu, ) = Z In {Z TN (Xn | g, E;f)}
— k=1

* Solving for X,

n=1

N N
1 T T ‘
k= N, ; (2nk) (Xn — pog) (Xn — pog,) where Nk = Z Y(znk)

sample variance weighted by responsibilities for ks, component



Expectation-maximization algorithm

VI-step: mixing coefficients estimation

Log likelihood
Constraint on 1y, :

Inp(X|m, e, 22) Z In {Z TN (Xn | 121, EL)} i 1
T =

n=1 k=1

Use Lagrange multiplier A to enforce constraint

K
Inp(X|m, p, X))+ A (Z T — l)

k=1

Derivative w.r.t. 1y,

~_ N (xnm 3)
+ A
Z Z TN (Xn |1, 25)

Solve for my,
Ny,
T = ,\L (where A = —N)




Expectation-maximization algorithm
putting things together

1.

E step

Compute responsibilities

M step

Maximize likelihood
given the
responsibilities

Evaluate the log likelihood

Iterate if log likelihood has
increased

kN (x| 2k)

8 (-:nk) —
Z le Xn s 2l )
1 N
)‘.LEE“ — "\_ Z Y (-:-n.k)xn.
k n=1
1 N
SN, > VGak) (ko = 13 (x0 — ™)
k n=1
onew L
K N

Inp(X|p, X, 7 ZIH{Z TN (X |1 Ek)}



llustration of the EM algorithm
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