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The curse of dimensionality

• Many dimensions measured

• E.g. in linear regression:
• Variance in 𝛽𝑀𝐿 increases drastically

• Hard to interpret

• Hard to visualize



The blessing of dimensionality

• Typically there are only a small number of 
phenomena underlying  the data

• Observed data are redundant 
representations

• Concentration of measure
• If a function is smooth across dimensions, 

then it is almost constant in a high 
dimensional space => easy to describe



Example: The naïve physicist

• We record a ball on a string over time

• Original signal is 1-dimensional

• Three cameras placed arbitrarily in 3D 
space

• 2D measurements of each camera are 
distorted by noise

• Can we recover the original phenomenon?

[Shlens 2003]



Example: The naïve physicist

• Sample location over time
• 2-dimensional projection per camera for each 

time point

• Each sample is 6 dimensional
𝑋 = 𝑥𝐴, 𝑦𝐴, 𝑥𝐵, 𝑦𝐵, 𝑥𝐶 , 𝑦𝐶

• Goal: compute the most meaningful basis 
for the data
• In the example: recover the x-axis

[Shlens 2003]



Signal-to-noise ratio

• In theory each camera in the example should 
record a straight line

• Deviation from straight line due to noise

• High signal to noise ratio
• High precision data

• Low signal to noise ratio
• Noise contaminated data

Measurements from camera A

[Shlens 2003]



Redundancy

• Low redundancy corresponds to low 
correlation
• (a): 𝑥𝐴, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦

• High redundancy implies high 
correlation
• (c): (𝑥𝐴,  𝑥𝐴) 𝑥𝐴 sensor in meters,  𝑥𝐴

sebnsor in inches
• Recording only one if the two would 

help reduce the number of recordings
• Ideal recording:

• 𝑟2 − 𝑟1  𝛽

• => dimensionality reduction

Dashed line: least squares fit: 𝑟1
 𝛽

with
𝑟2 = 𝑟1𝛽 + 𝜖 [Shlens 2003]
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• High dimensional data



Principal components analysis

• High dimensional data

• Find most important axes of 
variation (e.g. PC1)
• Maximize signal to noise ratio

• => principal components 

• Minimize redundancy
• => orthogonal components



Principal components analysis

• U forms a new basis for the data in X as 
a linear combination of the original 
basis

• Y is the projection of the of X onto the 
basis {𝑢1, … , 𝑢𝑀}
• What is the best way to re-express X?
• What is a good choice for P?

• Maximize signal to noise ratio
• => principal components 

• Minimize redundancy
• => orthogonal components



Covariance and variance

• Empirical covariance of the M
dimensions of X
• Diagonal entries: variances

• Measure amount of signal in that dimension

• Off-diagonal entries: co-variances
• Measure redundancy between dimensions

• How to find a good u?

• Signal to noise ratio is maximized
• => maximize variances 𝜆2
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• Off-diagonal entries: co-variances
• Measure redundancy between dimensions

• How to find a good u?

• Signal to noise ratio is maximized
• => maximize variance



Finding an optimal 𝑢1

• Maximize variance 

• Under the constraint 𝑢1
𝑇𝑢1 = 1

• 𝜆1: Lagrange multiplier enforcing constraint

• Set to zero

• It follows:
• 𝑢1 is an eigenvector of 𝑆𝑋
• Variance of 𝑌1 is equal to the eigenvalue 𝜆1

• Variance of 𝑌1 is maximized if we chose the 
eigenvector with largest eigenvalue!



Finding an optimal 𝑢1 to 𝑢𝑀

• Empirical covariance of the M dimensions of 
X
• Diagonal entries: variances

• Measure amount of signal in that dimension
• Off-diagonal entries: co-variances

• Measure redundancy between dimensions

• How to find a good u?

• Signal to noise ratio is maximized
• => maximize variance

• Redundancy is minimized
• =>covariances = 0
• Eigenvectors are orthogonal 𝑢𝑖

𝑇𝑢𝑗 = 𝛿(𝑖, 𝑗)
𝛿 𝑖, 𝑗 =(1 if i=j, 0 otherwise)

• =>  𝑢1 to 𝑢𝑀 are eigenvectors  corresponding to 
largest 𝑀 eigenvalues 𝜆1, … , 𝜆𝑀



Equivalent formulation:
Minimizing the squared reconstruction error
• If 𝑀 = 𝐷 principal components are used, then 

{𝑢1, … , 𝑢𝐷} form a complete orthogonal (𝑢𝑖
𝑇𝑢𝑖 =

𝛿(𝑖, 𝑗)) basis of the 𝐷-dim space.
• For M=D 𝑥𝑛 can exactly be represented by 𝑢𝑖.
• For M<D 𝑥𝑛 can only be approximated by 

reconstruction  𝑥 .

• Minimizing the squared error 
(= Frobenius norm)

• equivalent to minimizing the residual
variances

=>equivalent to PCA



Digits example [Bishop 2006]



Digit reconstruction [Bishop 2006]

(a) Eigenvalues vs. rank
(b) Sum of discarded eigenvalues vs. rank



PCA in genetics

• Population structure causes genome-
wide correlations between SNPs

• A large part of the total variation in the 
SNPs can be explained by population 
differences.
• PCA represents population structure on a 

continuous scale (admixture)

J. Novembre and T. Johnson et al. Genes mirror geography within Europe. Nature, 456(98-103), 2008.



PCA on A. thaliana 

• Stockori data

• 149 genotypes for 697 
plants

• Country:
• sampling origin



PCA on A. thaliana - Variances

• s



PCA on A. thaliana - reconstruction error



How about GWAS?

• Linkage allows to test for 
associations between 
phenotype and genetic markers
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How about GWAS?

• Linkage allows to test for 
associations between 
phenotype and genetic markers

• Hidden population structure 
causes correlations between 
SNPs

• Causing associations to non-
linked SNPs

• Take population structure into 
account

• Use PCA!



Eigenstrat [Price et al 2006]
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Eigenstrat [Price et al 2006]

• Compute covariance from SNPs

• Compute spectral decomposition

• Add PC with largest eigenvalue to 
model

• Iterate.

• Note:
• PCA corrects well for population 

structure
• But: cannot correct for 

relatedness/family structure
• Can be combined with LMMs 

(sometimes useful!)



Probabilistic PCA [Tipping & Bishop 1999]

• Only mean 𝐸 𝑥 and co-variance

matters

• Minimizing squared error  

=>Gaussian noise model

• bi-linear Gaussian model 
• 𝑥𝑛 ∼ 𝑁 𝜇 + 𝑊𝑧𝑛, 𝜎2𝐼𝑀
• 𝑧𝑛 hidden variables (principal component)
• 𝜇, 𝑊, 𝜎2 parameters

[Bishop 2006]



Generative process

Sample 𝑧𝑛 ∼ 𝑝 𝑧 = 𝑁(0, 𝐼)

Sample 𝑥𝑛 ∼ 𝑝 𝑥 𝑧 = 𝑁 𝜇 + 𝑊𝑧𝑛, 𝜎2𝐼

𝑝 𝑥 = ∫ 𝑝 𝑥 𝑧 𝑝 𝑧 d𝑧
= 𝑁(𝑥|𝜇, 𝑊𝑊𝑇 + 𝜎2𝐼)

[Bishop 2006]


