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The curse of dimensionality

* Many dimensions measured

* E.g. in linear regression:
* Variance in [y increases drastically

* Hard to interpret
* Hard to visualize
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The blessing of dimensionality

* Typically there are only a small number of &
phenomena underlying the data

 Observed data are redundant
representations

e Concentration of measure

* |If a function is smooth across dimensions,
then it is almost constant in a high
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Example: The naive physicist

* We record a ball on a string over time
* Original signal is 1-dimensional

* Three cameras placed arbitrarily in 3D
space

* 2D measurements of each camera are
distorted by noise

* Can we recover the original phenomenon?
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[Shlens 2003]



Example: The naive physicist

 Sample location over time

e 2-dimensional projection per camera for each A

t|me p0|nt camera B ‘
* Each sample is 6 dimensional

X = [XA;yA;xB;yB)xC;yC] < 'cameraC

* Goal: compute the most meaningful basis
for the data ——

* |In the example: recover the x-axis

[Shlens 2003]



Signal-to-noise ratio

* In theory each camera in the example should
record a straight line

Ya

* Deviation from straight line due to noise

* High signal to noise ratio
* High precision data

* Low sighal to noise ratio
* Noise contaminated data
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Redundancy

* Low redundancy corresponds to low
correlation

* (a): (x4, humidity)

* High redundancy implies high
correlation

* (c): (x4, X4) x4 sensor in meters, X4
sebnsor in inches

* Recording only one if the two would
help reduce the number of recordings
* |deal recording:
* - 7”1,3A
* => dimensionality reduction

low redundancy

high redundancy

Dashed line: least squares fit: rlﬁ

with
rz = T‘LB + €

[Shlens 2003]



Principal components analysis
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* High dimensional data
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Principal components analysis

0 2 4 6 8 10

* High dimensional data

* Find most important axes of
variation (e.g. PC1)
* Maximize signal to noise ratio
e =>principal components
* Minimize redundancy
e =>orthogonal components



Principal components analysis

e U forms a new basis for the data in X as
a linear combination of the original
basis

* Yis the projection of the of X onto the
basis {u4, ..., up}
* What is the best way to re-express X?

* What is a good choice for P?

* Maximize signal to noise ratio
e =>principal components

* Minimize redundancy
e =>orthogonal components

U'X =

T

Uq

uj

Urx =Y
Uq
R E xM]‘
Upm

Xy, e, UL X ]

T
' xl, ...,uM * xN_



Covariance and variance

dimensions of X
* Diagonal entries: variances

N
* Empirical covariance of the M S, = ;Z[In —#] [x, — %]
N —1
n=1

: : : : N
* Measure amount of signal in that dimension 1 . .

 Off-diagonal entries: co-variances Sy, = N — 1 Z up [x = &] [ =Xy
* Measure redundancy between dimensions n=1

* How to find a good u?

e Signal to noise ratio is maximized Y 19X %1

¢ =>maximize variances 12



Covariance and variance

N
* Empirical covariance of the M Sy = ;Z[In — %] [x,, — &]"
dimensions of X N—124

e Diagonal entries: variances
* Measure amount of signal in that dimension

N

i i i S -1 ul'lx,, — x] [x, — x]"u

e Off-diagonal entries: co-variances Y 1 [An n 1
* Measure redundancy between dimensions n=1

* How to find a good u?

e Signal to noise ratio is maximized Y 19X %1

e => maximize variance



Finding an optimal u4

e Maximize variance Sy, = U 1Syl

Under the constraintuiu; = 1
* Ai: Lagrange multiplier enforcing constraint

ul Syu; + A, (1 —uluy)

—u; Syuy + (1 —ufuy) = Syuy — 4wy

Vuy

Set to zero

It follows:
* U4 is an eigenvector of Sy
* Variance of Y; is equal to the eigenvalue A4

* Variance of Y; is maximized if we chose the
eigenvector W|th largest eigenvalue!

qul - ﬂ.lul — 0
Sxuy = AUy

u{\s‘;{ul —_ /11



Finding an optimal uq to uy,

* Empirical covariance of the M dimensions of

X

e Diagonal entries: variances

* Measure amount of signal in that dimension

* Off-diagonal entries: co-variances

* Measure redundancy between dimensions

* How to find a good u?
 Signal to noise ratio is maximized

* => maximize variance

* Redundancy is minimized

=>covariances =0
Eigenvectors are orthogonal u{ u; = §(i, j)
&(i,j) =(1if i=j, 0 otherwise)

=> U, to uy are eigenvectors corresponding to
largest M eigenvalues 14, ..., Ay

N
1 _ _
Sx = mzl[xn — %] [x, — x]"
—

N
1
S =y -1 Z ug [x, — %] [x, — X]"wy
£

_ T
Sy, = U1 SxUy

Sy = UTSgU = diag([Ay, o) Ang])



Equivalent formulation:
Minimizing the squared reconstruction error

e IfM =D p}rifncipal complonents :Fn]re usecll,(t en D D
U4, ..., Up} form a complete orthogonal (u; u; = _ Z P Z TV,
g(%,j)) basis of the D-dim space. F Xn Unilli (enui Jus
=1 i=1

* For M=D x,, can exactly be represented by u;.

* For M<D x, can only be approximated by
reconstruction x .

M
X, = Z(xnu?)ui + X

i=1

* Minimizing the squared error

: N D
(= Frobenius norm) 1 . re T
* equivalent to minimizing the residual ] = N—1 Z |, — X, |° = Z U SxU;
variances n=1 i=M+1
=>equivalent to PCA 1 & D

_ =~ \2 _ 2

= — Xng — X = A

T DY o

n=1d=1 i=M+1



Digits example (sishop 2006]
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Digit reconstruction sishop 2006

(a) Eigenvalues vs. rank

(b) Sum of discarded eigenvalues vs. rank
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PCA Iin genetics

* Population structure causes genome-
wide correlations between SNPs

* A large part of the total variation in the
SNPs can be explained by population
differences.

. b
* PCA represents population structureona ; o
continuous scale (admixture) o
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J. Novembre and T. Johnson et al. Genes mirror geography within Europe. Nature, 456(98-103), 2008.



PCA on A. thaliana
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PCA on A. thaliana - Variances
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R = |x — X4|> where x is the original data and X is the reconstructed data using

d principle components
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PCA on A. thaliana - reconstruction error
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How about GWAS?

* Linkage allows to test for
associations between
phenotype and genetic markers




How about GWAS?

* Linkage allows to test for
associations between
phenotype and genetic markers

* Hidden population structure
causes correlations between
SNPs

(7)



How about GWAS?

associations between
phenotype and genetic markers

* Linkage allows to test for @

* Hidden population structure
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How about GWAS?

* Linkage allows to test for
associations between
phenotype and genetic markers

* Hidden population structure
causes correlations between
SNPs

* Causing associations to non-
linked SNPs

* Take population structure into
account

(7)



How about GWAS?

* Linkage allows to test for
associations between °
phenotype and genetic markers

* Hidden population structure

causes correlations between - | ' .
SNPs () () () () o)
% ‘,‘,:0'(\

* Causing associations to non-

. <§}<// ’ .\;—5\'
linked SNPs "%, o

* Take population structure into @
account

e Use PCAI



E |ge N St rat [Price et al 2006]




Genome-wide SNP covariance

E |ge N St rat [Price et al 2006]

 Compute covariance from SNPs




P\
L
° l Genome-wide SNP covariance
ElgeﬂStrat [Price et al 2006] o ‘
 Compute covariance from SNPs =
Eigenvectors Eigenvalues

* Compute spectral decomposition . .
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 Compute covariance from SNPs

Eigenvectors Eigenvalues

AN

Add as covariates

I

* Compute spectral decomposition

* Add PC with largest eigenvalue to
model

N ( y

M S —=—=-nnn




. ! Genome-wide SNP covariance
Elgenstrat [Price et al 2006] 5 - )

* Compute covariance from SNPs
* Compute spectral decomposition

* Add PC with largest eigenvalue to
model

Eigenvectors Eigenvalues

BN

Add as covariates

* |[terate.

* Note:

* PCA corrects well for population
structure

e But: cannot correct for

relatedness/family structure

 Can be combined with LMMs
(sometimes useful!)




P o ba b| | |St|C PCA [Tipping & Bishop 1999]

* Only mean E[x] and co-variance
matters
* Minimizing squared error

1 N D D
J =mz Z(xnd — Xpa)® = Z 5
n=1d=1 1=M+1

=>Gaussian noise model

* bi-linear Gaussian model
e x, ~ N(u+ Wz, 0%l
* z, hidden variables (principal component)
e u,W,o? parameters

02\

e

N

J

[Bishop 2006]



Generative process

Sample z, ~ p(z) = N(0,])
Sample x, ~ p(x|z) = N(u + Wz, c%I)

p(x) = [ p(x|2)p(2) dz
= N(x|u, WWT + ¢2I)

[ [ )

Lo

o(2) p(x)

N

J
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[Bishop 2006]



