Current topics in computational biology

VII: Principal component analysis

Christoph Lippert

Material

• Jon Shlens, 2003:

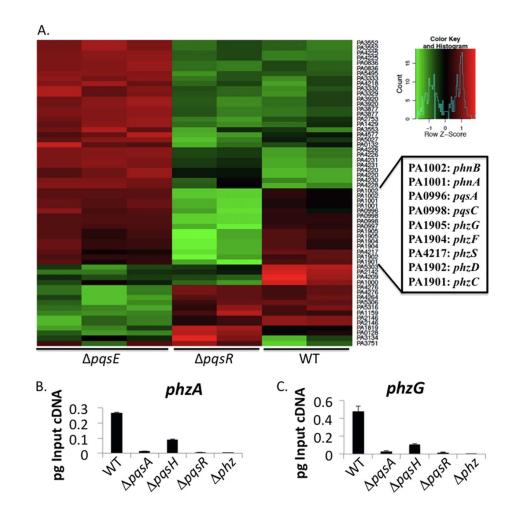
A TUTORIAL ON PRINCIPAL COMPONENT ANALYSIS - Derivation, Discussion and Singular Value Decomposition

• Chris Bishop, 2006

Pattern Recognition and Machine Learning, Chapter 12

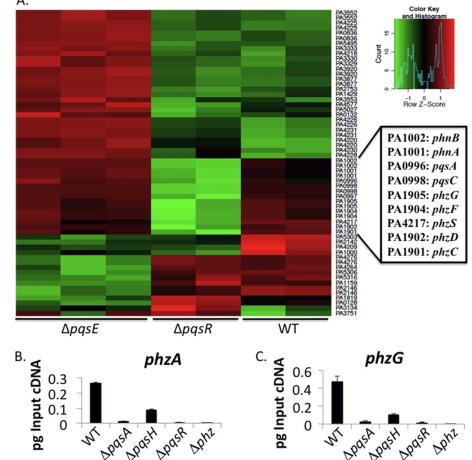
The curse of dimensionality

- Many dimensions measured
- E.g. in linear regression:
 - Variance in β_{ML} increases drastically
- Hard to interpret
- Hard to visualize



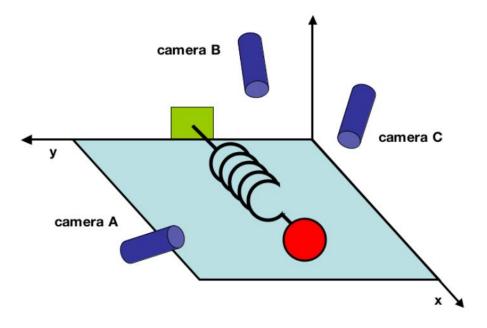
The blessing of dimensionality

- Typically there are only a small number of phenomena underlying the data
- Observed data are redundant representations
- Concentration of measure
 - If a function is smooth across dimensions, then it is almost constant in a high dimensional space => easy to describe



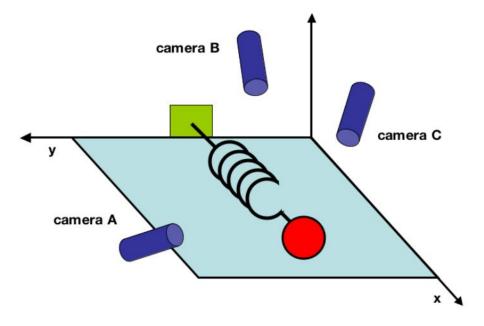
Example: The naïve physicist

- We record a ball on a string over time
- Original signal is 1-dimensional
- Three cameras placed arbitrarily in 3D space
- 2D measurements of each camera are distorted by noise
- Can we recover the original phenomenon?



Example: The naïve physicist

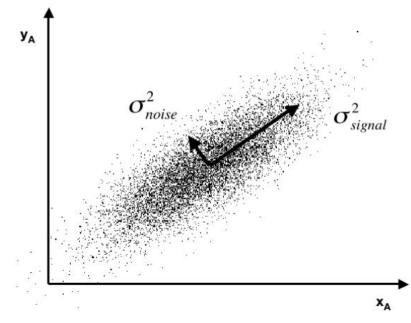
- Sample location over time
 - 2-dimensional projection per camera for each time point
 - Each sample is 6 dimensional $X = [x_A, y_A, x_B, y_B, x_C, y_C]$
- Goal: compute the most meaningful basis for the data
 - In the example: recover the x-axis



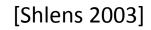
Signal-to-noise ratio

- In theory each camera in the example should record a straight line
- Deviation from straight line due to noise
- High signal to noise ratio
 - High precision data
- Low signal to noise ratio
 - Noise contaminated data

$$SNR = \frac{\sigma^2_{signal}}{\sigma^2_{noise}}$$

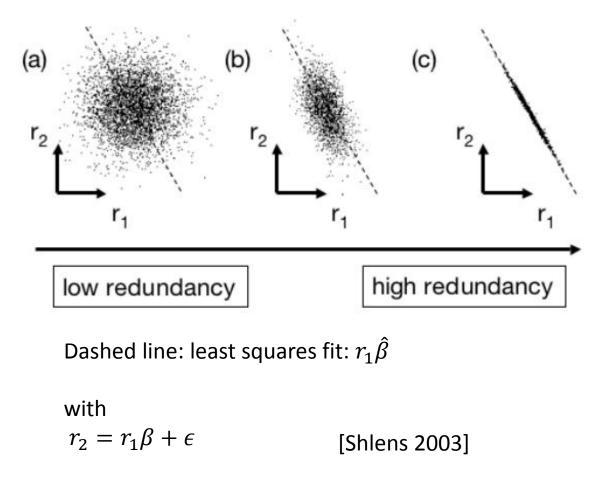


Measurements from camera A

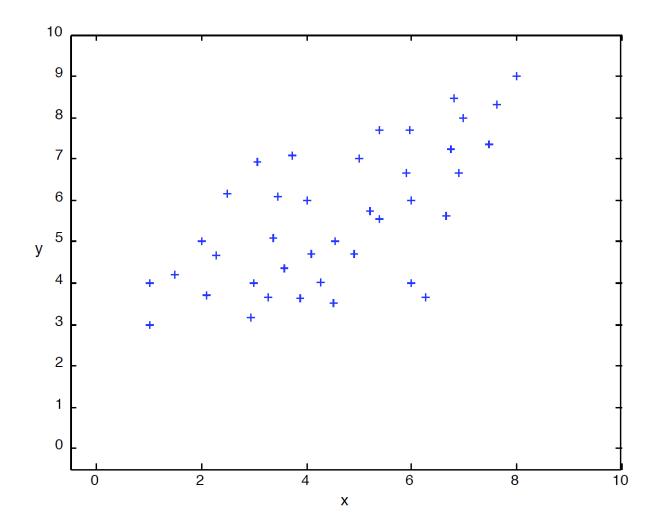


Redundancy

- Low redundancy corresponds to low correlation
 - (a): (*x_A*, *humidity*)
- High redundancy implies high correlation
 - (c): $(x_A, \tilde{x}_A) x_A$ sensor in meters, \tilde{x}_A sebnsor in inches
 - Recording only one if the two would help reduce the number of recordings
 - Ideal recording:
 - $r_2 r_1 \hat{\beta}$
 - => dimensionality reduction

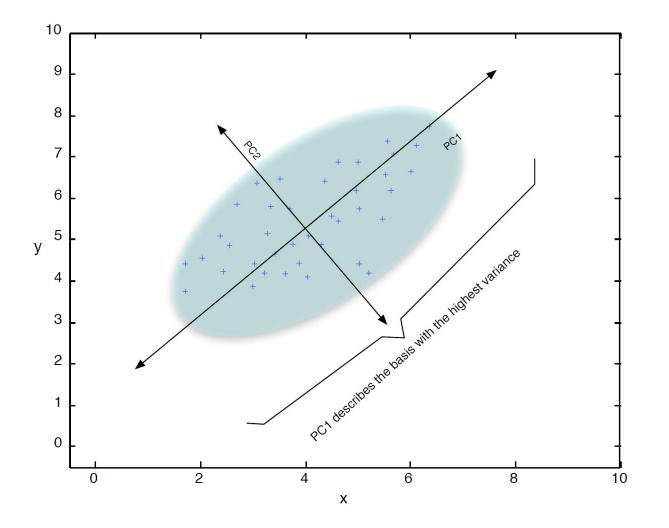


Principal components analysis



• High dimensional data

Principal components analysis



- High dimensional data
- Find most important axes of variation (e.g. PC1)
 - Maximize signal to noise ratio
 - => principal components
 - Minimize redundancy
 - => orthogonal components

Principal components analysis

- *U* forms a new basis for the data in *X* as a linear combination of the original basis
- Y is the projection of the of X onto the basis $\{u_1, \dots, u_M\}$
 - What is the best way to re-express X?
 - What is a good choice for *P*?
 - Maximize signal to noise ratio
 - => principal components
 - Minimize redundancy
 - => orthogonal components

 $U^T X = Y$ $\begin{bmatrix} u_1 \end{bmatrix}$

$$J^T X = \begin{bmatrix} \dots \\ u_M \end{bmatrix} \begin{bmatrix} x_1 \dots x_M \end{bmatrix}$$

$$Y = \begin{bmatrix} u_1^T \cdot x_1, \dots, u_M^T \cdot x_N \\ \vdots & \ddots & \vdots \\ u_1^T \cdot x_1, \dots, u_M^T \cdot x_N \end{bmatrix}$$

Covariance and variance

- Empirical covariance of the *M* dimensions of *X*
 - Diagonal entries: variances
 - Measure amount of signal in that dimension
 - Off-diagonal entries: co-variances
 - Measure redundancy between dimensions
- How to find a good *u*?
- Signal to noise ratio is maximized
 - => maximize variances λ^2

$$S_X = \frac{1}{N-1} \sum_{n=1}^{N} [x_n - \bar{x}] [x_n - \bar{x}]^T$$

$$S_{Y_1} = \frac{1}{N-1} \sum_{n=1}^{N} u_1^T [x_n - \bar{x}] [x_n - \bar{x}]^T u_1$$

$$S_{Y_1} = u_1^T S_X u_1$$

Covariance and variance

- Empirical covariance of the *M* dimensions of *X*
 - Diagonal entries: variances
 - Measure amount of signal in that dimension
 - Off-diagonal entries: co-variances
 - Measure redundancy between dimensions
- How to find a good *u*?
- Signal to noise ratio is maximized
 - => maximize variance

$$S_X = \frac{1}{N-1} \sum_{n=1}^{N} [x_n - \bar{x}] [x_n - \bar{x}]^T$$

$$S_{Y_1} = \frac{1}{N-1} \sum_{n=1}^{N} u_1^T [x_n - \bar{x}] [x_n - \bar{x}]^T u_1$$

$$S_{Y_1} = u_1^T S_X u_1$$

Finding an optimal u_1

• Maximize variance $S_{Y_1} = u_1^T S_X u_1$

 $u_1^T S_X u_1 + \lambda_1 (1 - u_1^T u_1)$

- Under the constraint $u_1^T u_1 = 1$
 - λ_1 : Lagrange multiplier enforcing constraint
 - $\frac{\mathbf{v}}{\nabla u_1} u_1^T S_X u_1 + \lambda_1 (1 u_1^T u_1) = S_X u_1 \lambda_1 u_1$ $S_X u_1 \lambda_1 u_1 = 0$ $S_X u_1 = \lambda_1 u_1$ the $u_1^T S_X u_1 = \lambda_1$

- Set to zero
- It follows:
 - u_1 is an eigenvector of S_X
 - Variance of Y_1 is equal to the eigenvalue λ_1
- Variance of *Y*₁ is maximized if we chose the eigenvector with largest eigenvalue!

Finding an optimal u_1 to u_M

- Empirical covariance of the *M* dimensions of *X*
 - Diagonal entries: variances
 - Measure amount of signal in that dimension
 - Off-diagonal entries: co-variances
 - Measure redundancy between dimensions
- How to find a good *u*?
- Signal to noise ratio is maximized
 - => maximize variance
- Redundancy is minimized
 - =>covariances = 0
 - Eigenvectors are orthogonal $u_i^T u_j = \delta(i, j)$ $\delta(i, j) = (1 \text{ if } i=j, 0 \text{ otherwise})$
 - => u_1 to u_M are eigenvectors corresponding to largest M eigenvalues $\lambda_1, \dots, \lambda_M$

$$S_X = \frac{1}{N-1} \sum_{n=1}^{N} [x_n - \bar{x}] [x_n - \bar{x}]^T$$

$$S_{Y_1} = \frac{1}{N-1} \sum_{n=1}^{N} u_1^T [x_n - \bar{x}] [x_n - \bar{x}]^T u_1$$

$$S_{Y_1} = u_1^T S_X u_1$$

$$S_Y = U^T S_X U = diag([\lambda_1, \dots, \lambda_M])$$

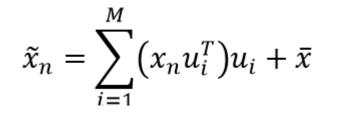
Equivalent formulation: Minimizing the squared reconstruction error

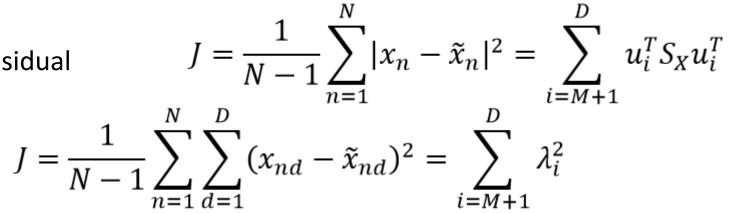
- If M = D principal components are used, then $\{u_1, \dots, u_D\}$ form a complete orthogonal $(u_i^T u_i = \delta(i, j))$ basis of the *D*-dim space.
- For $M=D x_n$ can exactly be represented by u_i .
- For $M < D x_n$ can only be approximated by reconstruction \tilde{x} .
- Minimizing the squared error

(= Frobenius norm)

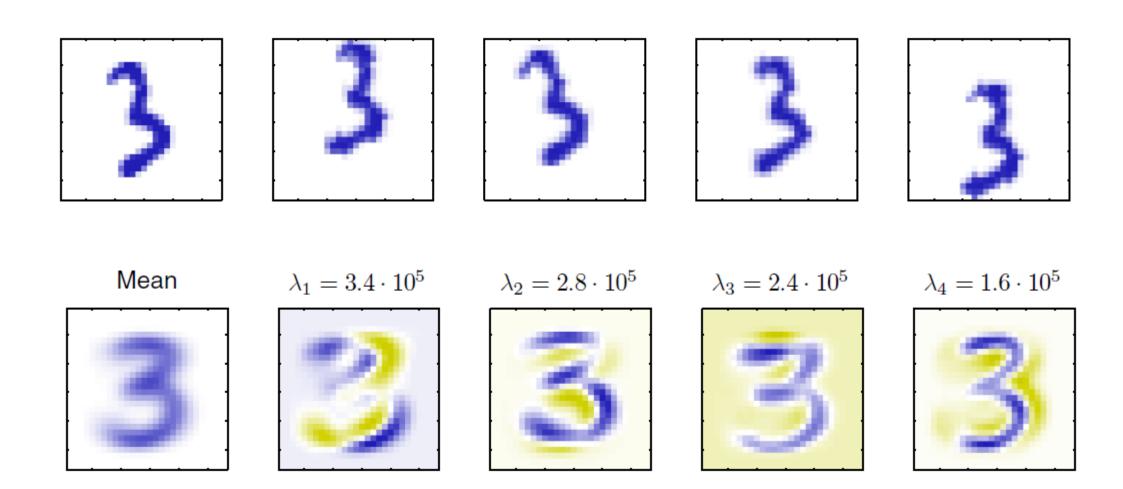
- equivalent to minimizing the residual variances
 - =>equivalent to PCA

$$x_n = \sum_{i=1}^{D} \alpha_{ni} u_i = \sum_{i=1}^{D} (x_n u_i^T) u_i$$

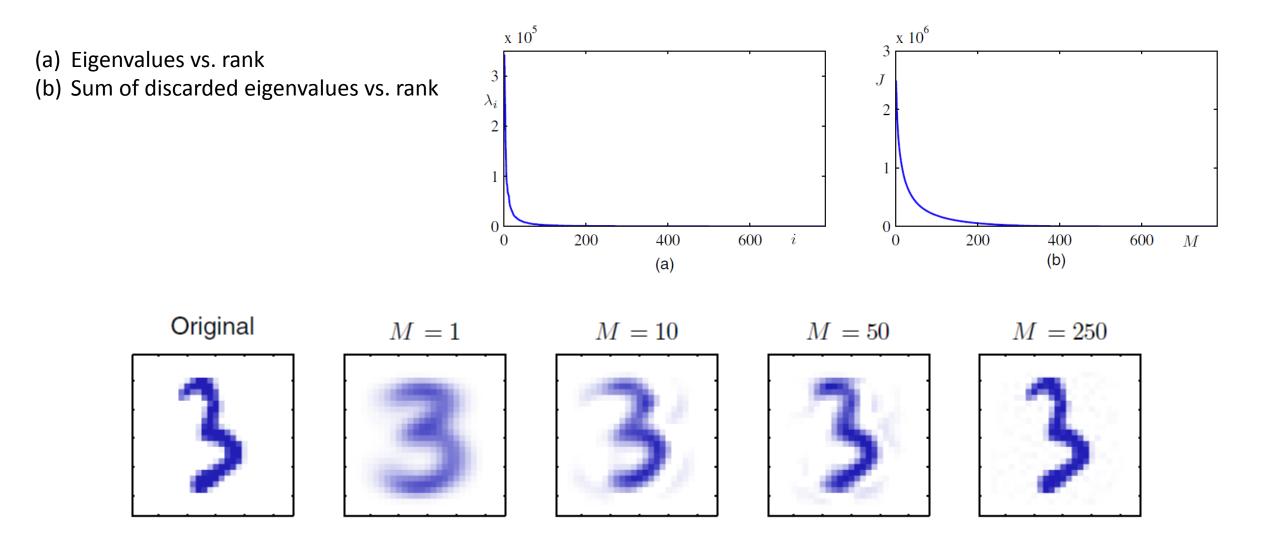




Digits example [Bishop 2006]

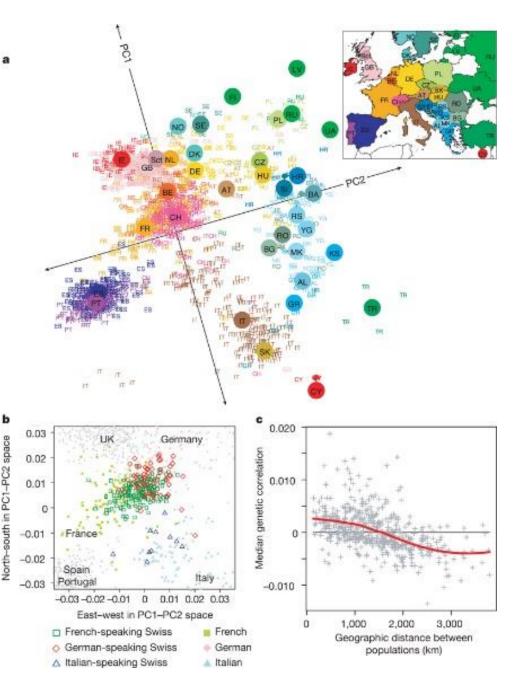


Digit reconstruction [Bishop 2006]



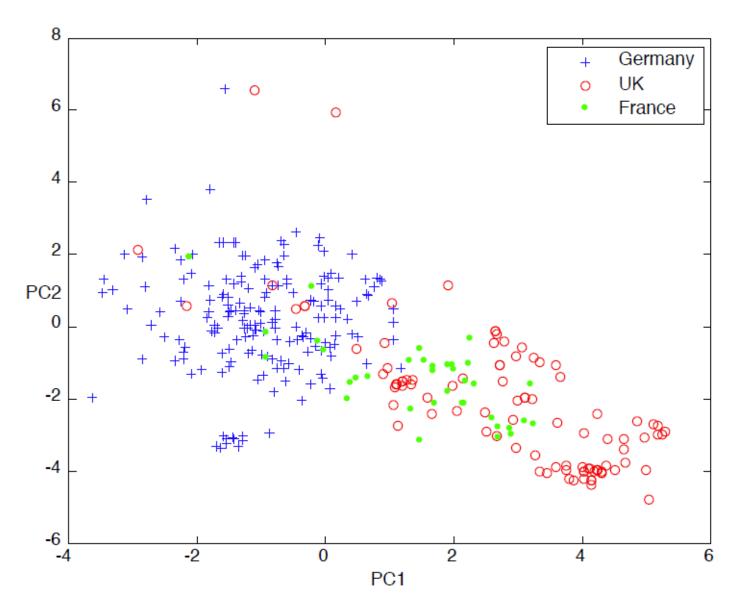
PCA in genetics

- Population structure causes genomewide correlations between SNPs
- A large part of the total variation in the SNPs can be explained by population differences.
 - PCA represents population structure on a continuous scale (admixture)

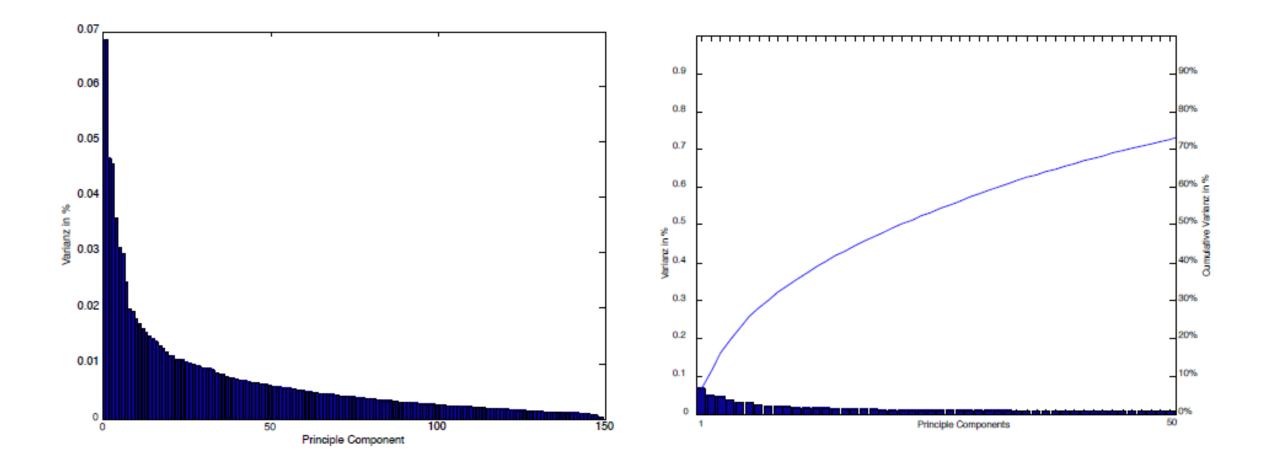


PCA on A. thaliana

- Stockori data
- 149 genotypes for 697 plants
- Country:
 - sampling origin

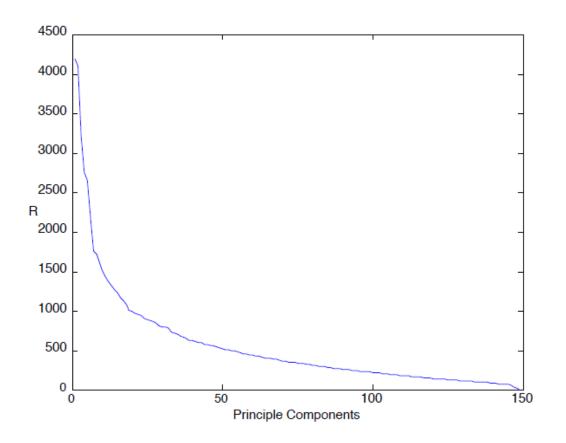


PCA on A. thaliana - Variances

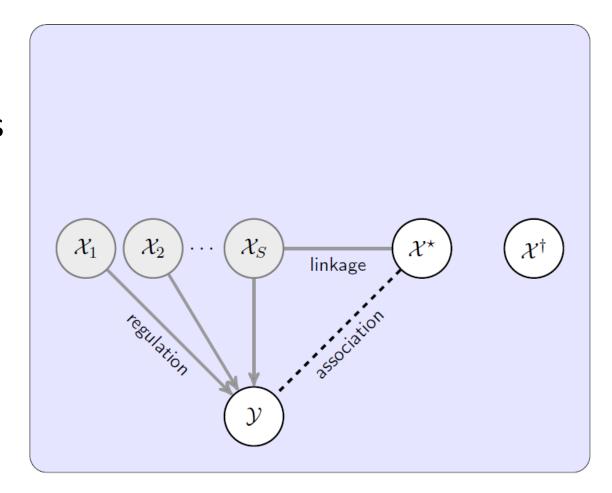


PCA on A. thaliana - reconstruction error

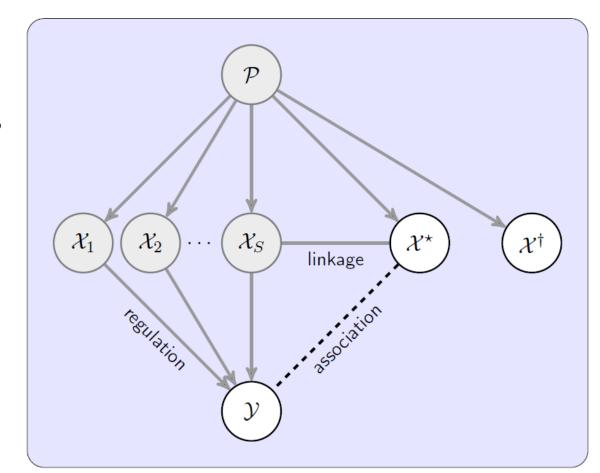
 $R = |x - \hat{x}_d|^2$ where x is the original data and \hat{x} is the reconstructed data using d principle components



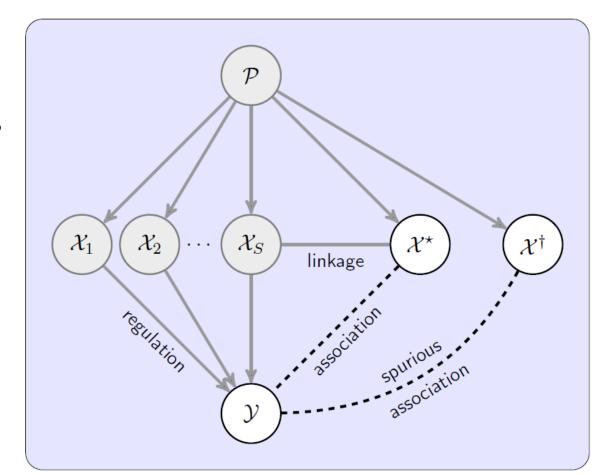
 Linkage allows to test for associations between phenotype and genetic markers



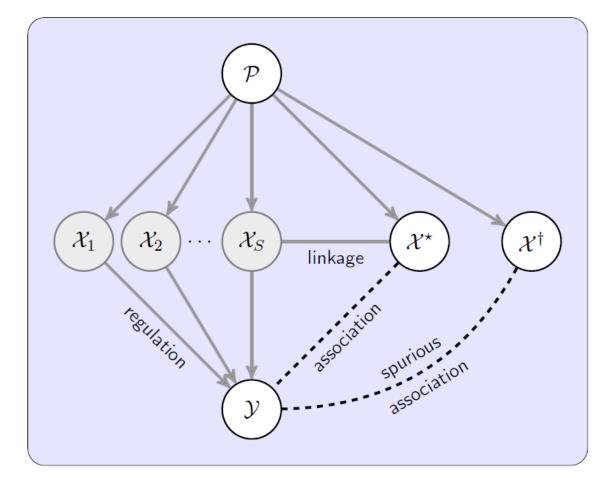
- Linkage allows to test for associations between phenotype and genetic markers
- Hidden population structure causes correlations between SNPs



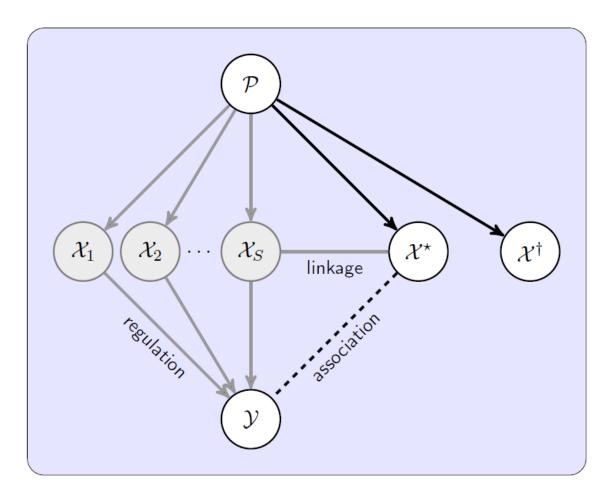
- Linkage allows to test for associations between phenotype and genetic markers
- Hidden population structure causes correlations between SNPs
- Causing associations to nonlinked SNPs



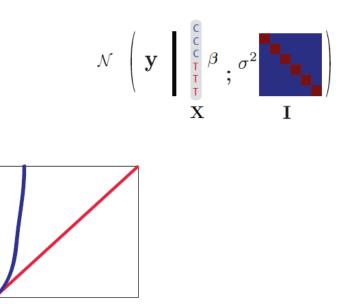
- Linkage allows to test for associations between phenotype and genetic markers
- Hidden population structure causes correlations between SNPs
- Causing associations to nonlinked SNPs
- Take population structure into account



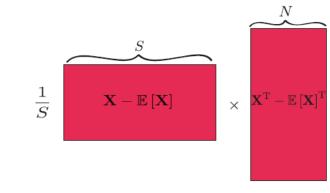
- Linkage allows to test for associations between phenotype and genetic markers
- Hidden population structure causes correlations between SNPs
- Causing associations to nonlinked SNPs
- Take population structure into account



• Use PCA!



• Compute covariance from SNPs



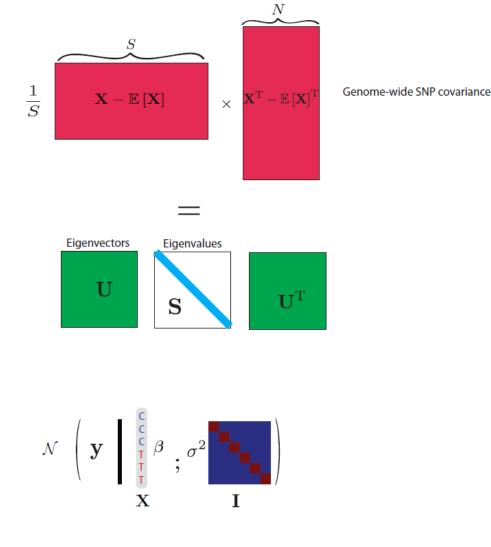
 $\mathcal{N} \left(\mathbf{y} \right| \left[\begin{array}{c} \mathbf{c} \\ \mathbf{c} \\ \mathbf{c} \\ \mathbf{f} \\ \mathbf{f} \end{array} \right] , \sigma^2$

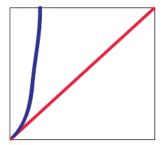
Ι

х

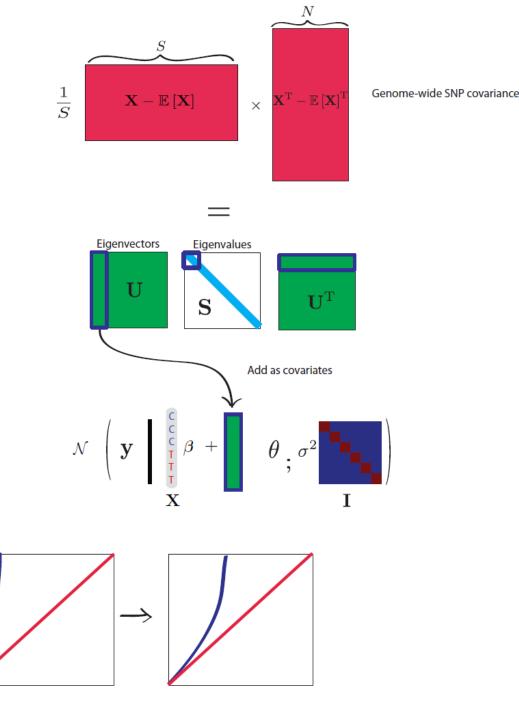
Genome-wide SNP covariance

- Compute covariance from SNPs
- Compute spectral decomposition

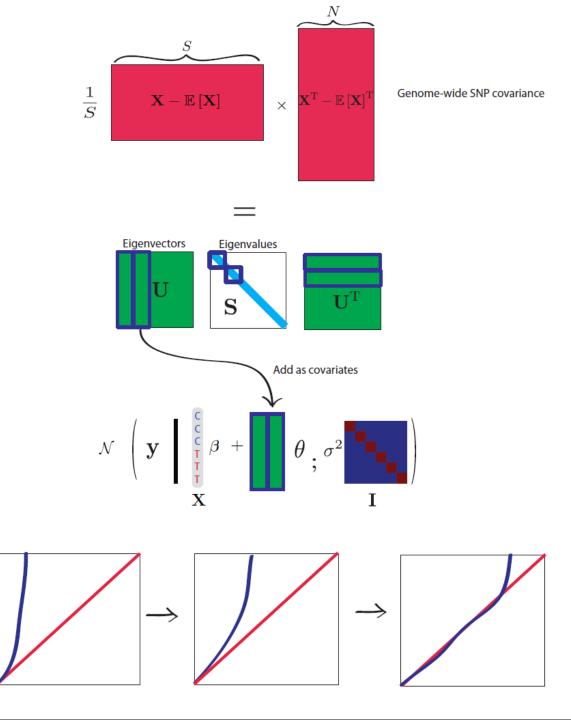




- Compute covariance from SNPs
- Compute spectral decomposition
- Add PC with largest eigenvalue to model



- Compute covariance from SNPs
- Compute spectral decomposition
- Add PC with largest eigenvalue to model
- Iterate.
- Note:
 - PCA corrects well for population structure
 - But: cannot correct for relatedness/family structure
 - Can be combined with LMMs (sometimes useful!)



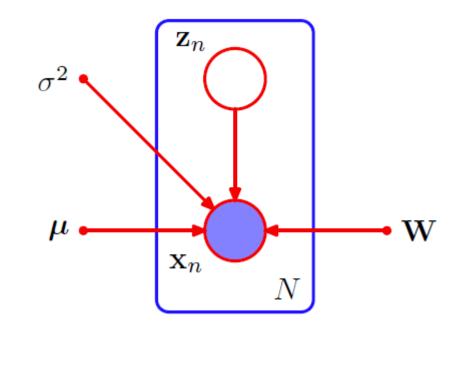
Probabilistic PCA [Tipping & Bishop 1999]

- Only mean E[x] and co-variance matters
- Minimizing squared error

$$J = \frac{1}{N-1} \sum_{n=1}^{N} \sum_{d=1}^{D} (x_{nd} - \tilde{x}_{nd})^2 = \sum_{i=M+1}^{D} \lambda_i^2$$

=>Gaussian noise model

- bi-linear Gaussian model
 - $x_n \sim N(\mu + W z_n, \sigma^2 I_M)$
 - z_n hidden variables (principal component)
 - μ , W, σ^2 parameters



[Bishop 2006]

Generative process

