Current Topics in Computational Biology
 Winter 2014
 Excercise 1
 Hand-in date: Monday, January 13, 2014 at 2:00 pm

Task 1-1 Bayesian inference for the normal distribution

(a) You are given N independent observations of a normal distribution with known mean μ and but unknown variance. Derive the posterior distribution of the precision $\tau=1 / \sigma^{2}$ under a gamma distribution after N observations.

The gamma distribution is specified as

$$
\operatorname{Gamma}(\tau \mid \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \tau^{\alpha-1} e^{-\beta \tau}
$$

where $\Gamma(a)$ is the gamma function of a.
(b) You are given N independent observations of a normal distribution with unknown mean and variance. The joint prior distribution $p(\mu, \tau)$ over mean μ and precision τ where the marginal distribution over the precision is a gamma distribution as above and the conditional distribution of the mean μ conditioned on the precision τ is a normal distribution as specified below. Derive the joint posterior distribution $p(\mu, \tau \mid \mathcal{D})$.
Joint normal-gamma prior distribution over μ and τ :

$$
p(\mu, \tau)=\underbrace{\mathcal{N}\left(\mu \mid m_{0}, s_{0}^{2} / \tau\right)}_{p(\mu \mid \tau)} \cdot \underbrace{\operatorname{Gamma}(\tau \mid \alpha, \beta)}_{p(\tau)}
$$

Task 1-2 Bayesian inference for the binomial distribution

A coin is flipped N times and yielded k times heads. The conjugate prior for the probability of success θ in a binomial distribution $B(k \mid N, \theta)$, where N is the number of trials and k is the number of successes, is the beta distribution.

Derive the posterior distribution of the probability of success θ.

$$
\begin{aligned}
\operatorname{Binomial}(k \mid N, \theta) & =\binom{N}{k} \theta^{k}(1-\theta)^{N-k} \\
\operatorname{Beta}(\theta \mid \alpha, \beta) & =\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)}
\end{aligned}
$$

where $B(a, b)$ denotes the Beta function of a and b.

