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Why Gaussian processes?

» So far: linear models with a
finite number of basis functions,
eg ¢(x)=(1,2,2°%, ..., 25)
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» How to design a suitable
basis?

» How many basis functions to
pick?
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Making predictions with variance component models
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Making predictions with variance component models

» Linear model, accounting for a set of measured SNPs X

p(y| X,8,0%) <y|2w505,01>

» Prediction at unseen test input given max. likelihood weight:

p(y*\w*,é) :N<y* | w*é,a2)
» Marginal likelihood
p<y|x,a2,a§>:/N(yrxe,o2I>N(0|o,a§I)
]
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» Making predictions with variance component models?



Further reading

» C. E. Rasmussen, C. K. Williams
Gaussian processes for machine learning

» Comprehensive and freely available introduction (Appendix!).

» Christopher M. Bishop: Pattern Recognition and Machine learning
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The Gaussian distribution

» Gaussian processes are merely based on the good old Gaussian
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» Covariance matrix or kernel matrix
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A 2D Gaussian

» Probability contour
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A 2D Gaussian

Varying the covariance matrix
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Inference

> Joint probability p(y1,y2 | K) =N ([y1,32] | 0, K)
» Conditional probability

P(yl,y2|K)
p(y1| K)

o (S 1,1}

» Completing the square yields a Gaussian with non-zero as posterior
for yo.

p(y2 |1, K) =



Inference

Gaussian conditioning in 2D
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Extending the idea to higher dimensions

> Let us interpret y; and yo as outputs in a regression setting.
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Extending the idea to higher dimensions

> Let us interpret y; and yo as outputs in a regression setting.

» We can introduce an additional 3rd point.

5

1
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X

» Now P([y1,92,y3] | K3) =N ([y1,v2,v3] | 0, K3), where K3 is now
a 3 x 3 covariance matrix!



Constructing Covariance Matrices

» Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

> Issue: how to construct a good covariance matrix?



Constructing Covariance Matrices

Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

> Issue: how to construct a good covariance matrix?

» A simple heuristics
1 06
Ka= [ 06 1 ]



Constructing Covariance Matrices

Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

> Issue: how to construct a good covariance matrix?

» A simple heuristics

Y

06 1
1 06 O
K;=|06 1 06
0 06 1

» Note:

» The ordering of the points y1, y2, y3 matters.

» Important to ensure that covariance matrices remain positive definite
(matrix inversion).
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Constructing Covariance Matrices

A general recipe

» Use a covariance function (kernel function) to construct K:
K;j = k(zi, zj; Ok)

» Example: The linear covariance function corresponds to a variance
component model

kun (@i, xj,; A) = (A2 @y - x
» Example: The squared exponential covariance function embodies the
belief that points further apart are less correlated:

)2
ksg(z;,zj,; A, L) = A? exp{—0.5-(ml z;) }

» Ok = {A, L}: hyperparameters.
» A? Overall correlation, amplitude L? Scaling parameter, smoothness

» Denote the covariance matrix for a set of inputs X = {x1,...,zN}
as: KX,X(@K)



Constructing Covariance Matrices
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Constructing Covariance Matrices

GP samples using the squared exponential covariance function

Reminder: Every function line corresponds to a sample drawn from this 2D
Gaussian!
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» Choose discretization of x axes X = {zg,z1,...,ZN}.

» Evaluate covariance K = Kx x(Ok)
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Drawing samples from a Gaussian processes

For each sample do:
» Choose discretization of x axes X = {zg,z1,...,ZN}.

» Evaluate covariance K = Kx x(Ok)

Math “Matlab”
» Draw from » Draw independent Gaussian
variables

ply|K)=N(y|0,K)
y = randn(N, 1)

» Rotate with v K

y=chol(K)- g



Why this all works

» Consistency of the 10D and 500D Gaussian.
» A small quiz:
» Let y1,y2,ys have covariance matrix
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ie. p({y1,y2,y3} | K3) =N ({y1, 92,43} | 0, K3)



Why this all works

» Consistency of the 10D and 500D Gaussian.
» A small quiz:
» Let y1,y2,ys have covariance matrix

1 05 0 15 -1
K;=| 05 1 05 | and inverse K'3_1 = 102
0 05 1 05 -1

ie. p({y1,92,93} | K3) = N ({y1, 92,93} | 0, K3)
» Now focus on the variables y1, y2, integrating out ys.

p({y1,92}) = | N ({y1, 92,43} | 0, K3)

Y3

=N ({y1,92} | 0, K3)

Which of the following statements is true

s (1 7] o[ 1)

0.5
-1
1.5



Why this all works

GP as infinite object (philosophical)

» A valid covariance function k(z, ') defines recipe to calculate
covariance for any choice of inputs.
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Why this all works

GP as infinite object (philosophical)

» A valid covariance function k(z, ') defines recipe to calculate
covariance for any choice of inputs.

» Prior on functions: all points on the real line are inputs; Kz % is an
infinite object!

» Numerical implementation: choose finite subset X and evaluate on a
reduced, finite Kx x, exploiting consistency rule.

15 -10 -5 0 5 10 15
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Function space view

So far

1. Joint Gaussian distribution over the set of all outputs y.

2. Covariance function as a recipe to construct a suitable covariance
matrices from the corresponding inputs X.



Function space view

The Gaussian process as a prior on functions

» Covariance function and hyperparameters reflect the prior belief on
function smoothness, lengthscales etc.

> The general recipe allows a joint Gaussian to be constructed for an
arbitrary selection of input locations X.

Prior on infinite function f(x) ;I’fr((}n func’zltor; allss
— 1, s J N

p(f(x)) = GP(f(2) | k) p(f1X,0k) =N (f|0,Kx x(Ok



Noise-free observations

> Given noise-free training data D = {x,,, fn})\;
» Want to make predictions f* at test points X*
» Joint distribution of f and f* is

p([f, F11 X, X7, @K):N<[f,f*]|0,[ II{fx,x Kx x- D

x+x Kx+x+

(All kernel matrices K depend on hyperparameters @k which are dropped
for brevity.)



Noise-free observations

Given noise-free training data D = {x,, fn}fyzl
Want to make predictions f* at test points X*
Joint distribution of f and f* is

v

v

v

Kx x Kxx+
pi. 511X X0 00 =& (19777 0| g o
X*X X* X+
(All kernel matrices K depend on hyperparameters @k which are dropped
for brevity.)

v

Real data is rarely noise-free.



Inference

» Given observed noisy data D = {X,y}, the joint probability over
latent function values f and f* given y is

Prior
p([f, £ X, X"y, Ox,0%) < N ([f, f] | 0, K)
N
< T[N (vn | for0?).
n=1

Likelihood



Inference

» Given observed noisy data D = { X, y}, the joint probability over
latent function values f and f* given y is

Prior

p([f7f*HX7X*7ya@K7U2)O(N<[f7f*]0’ |: KX’X KX’X* :| >

KX*’X KX*,X*

N
X H N(y” | fn70-2) 3

n=1

Likelihood



Inference

» Applying “Gaussian calculus”, integrating out f yields

KX,X + 021 KX,X*
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Inference

» Applying “Gaussian calculus”, integrating out f yields

KX,X + 021 KX,X*
Kx-x  Kx-x-

Py, £11 X, X"y, O, 0%) ox N ([y,f*] o, [

> Note: Assuming noisy instead of perfect observation noise merely
corresponds to adding a diagonal component to the self-covariance

KX,X-



Making predictions

» The predictive distribution follows from the joint distribution by
completing the square (conditioning)

KX’X—FO'QI KX,X*
KXMX KX*7X*
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Making predictions

» The predictive distribution follows from the joint distribution by
completing the square (conditioning)

KX’X—FO'QI KX,X*
KXMX KX*7X*

iy, £11 X, X*,y, O, ) o N ([y,f*} o, [

» Gaussian predictive distribution for f*

p(f*|X7an*7 @K702) :N(f* | H*,S*)With
-1
[J/*:Kx*)x [KX,X+O'2I} Y
* —1
X :KX*,X*—KX*,X [KX7x—|—O'2I] KX,X*



Making PredictiOns
Example
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Learning hyperparameters

1. Fixed covariance matrix: p(y | K)
2. Constructed covariance matrix: {K};; = k(x;, x;; Ok)

3. Can we learn the hyperparameters @?



Learning hyperparameters

» Formally we are interested in the posterior

p(Ok|D) xp(y| X, Ok)p(Ok)

» Inference is analytically intractable!
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» Formally we are interested in the posterior

p(Ok|D) xp(y| X, Ok)p(Ok)

» Inference is analytically intractable!

» MAP estimate instead of a full posterior. Set @k to the most
probable hyperparameter settings:

Ok = argmaxIn[p (y | X, Ok) p(Ok)]

Ok

= argmaxInN (y | 0, Kx x(Ok) +0°I) + Inp(O)
Ok

1
= argmax | — 5 logdet[K x x (@) + o*I]
Ok

1 N
_ §yT[KX,X(@K) + oIy — 5 log 27 + Inp( @)



Learning hyperparameters

» Formally we are interested in the posterior

p(Ok|D) xp(y| X, Ok)p(Ok)

» Inference is analytically intractable!

» MAP estimate instead of a full posterior. Set @k to the most
probable hyperparameter settings:

Ok = argmaxIn[p (y | X, Ok) p(Ok)]

Ok

= argmaxInN (y | 0, Kx x(Ok) +0°I) + Inp(O)
Ok

1
= argmax | — 5 logdet[K x x (@) + o*I]
Ok

1 N
— in[Kxﬁx(@K) —|—U2I}*1y — 510g27r—|—1np(@p<)

» Optimization can be carried out using standard optimization
techniques.



Choosing covariance functions

» The covariance function embodies the prior belief about functions.

» Example: linear regression
Yn = WTnp +c+ wn
» Covariance function denote covariation

k2, 20,) = (Yn¥n)

= <(w:zn + ¢+ ¥y (wal, + ¢ + ¢§L)>
=w?. Tl + 2 +6n,n’w721
—_———

kernel: k(xn,x!,)



Choosing covariance functions

Multidimensional input space

» Generalise squared exponential covariance function to multiple
dimensions

p— . 2
» 1 Dimension ksg(zi, xj,; A, L) = A% exp {0'5 ' W}
L

> Lengthscale parameters Ly denote “relevance” of a particular data
dimension.

» Large L, correspond to irrelevant dimensions.



Choosing covariance functions

Multidimensional input space

» Generalise squared exponential covariance function to multiple

dimensions

L 2 (zi — x;)?

» 1 Dimension ksg(x;,xj,; A, L) = A% expq —0.5- B B
I
» D Dimensions dD
(z¢ —x )2
kse(zi, xj,; A, L) = A® exp{ —0. 52
d=1 d

> Lengthscale parameters Ly denote “relevance” of a particular data
dimension.

» Large L, correspond to irrelevant dimensions.



Choosing covariance functions

2D regression



Choosing covariance functions
2D regression




Choosing covariance functions
Any kernel will do

» Established kernels are all valid covariance functions, allowing for a
wide range of possible input domains X:
» Graph kernels (molecules)
» Kernels defined on strings (DNA sequences)



Choosing covariance functions

Combining existing covariance functions

» The sum of two covariances functions is itself a valid covariance
function

kS(x7x/> = ]{?1(.%',1'/) + kg(l’,l’l)

» The product of two covariance functions is itself a valid covariance
function

kp(x,2') = ki(z,2') - ko(z,2")



GPs versus variance component models

Variance component

> Linear model

p(y] X,0,07%)

=N(y| ®(X)-6,0°1)
» Marginalize over 6

p(y| X, 0}, 0%

=N(y|0,028(X)®(X)" +0°I)
N—————

K



GPs versus variance component models

Variance component Gaussian process

» Linear model > Define covariance through
“recipe” Kx x(Ok)

X,0,0° . R
py| X,6,0%) » Implies marginal likelihood
=N(y| ®(X)-6,0°1)
T p(y|X, @K’UQ)
» Marginalize over 6 — N (g0, Kx x(O)+01)
) N
(y|X7 gv ) K

=N(y|0,028(X)P(X)" +0°1)

) q

K



GPs versus variance component models

Variance component Gaussian process

» Linear model > Define covariance through
“recipe” Kx x(Ok)

2
py| X,6,0%) » Implies marginal likelihood
=N(y| ®(X)-6,0°1)
M inali 0 p(y|X, @K’UQ)
» Marginalize over
- =N(y|0,Kx x(Ok) +o°I)
——
(y|Xa q7 ) K
=N(y|0,028(X)®(X)" +0I)
K

> Any feature map @ implies a valid covariance function Kx x(@x).



GPs versus variance component models

Variance component Gaussian process

» Linear model > Define covariance through

“recipe” Kx x(Ok
p(y| X,0,0°) Ch9

» Implies marginal likelihood
=N(y| ®(X)-6,0°1)

> M inali 0 p(y|X7@Ka02)
arginalize over
- =N(y|0,Kx x(Ok) +o°I)
p(y|X,a§,02) K
=N(y|0,028(X)®(X)" +0I)
N—————
K

> Any feature map @ implies a valid covariance function Kx x(@x).

» The inverse is not necessarily true!
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