
Machine Learning and Statistics
in Genetics and Genomics

VI: Introduction to Gaussian Processes

Christoph Lippert

Microsoft Research
eScience group

Los Angeles , USA

Current topics in computational biology
UCLA

Winter quarter 2014

Motivation

Intuitive approach

Function space view

Outline

Outline

Motivation

Intuitive approach

Function space view

Why Gaussian processes?

I So far: linear models with a
finite number of basis functions,
e.g. φ(x) = (1, x, x2, . . . , xK)

I Open questions:
I How to design a suitable

basis?
I How many basis functions to

pick?

I Gaussian processes: accurate
and flexible regression method
yielding predictions alongside
with error bars.

Why Gaussian processes?

I So far: linear models with a
finite number of basis functions,
e.g. φ(x) = (1, x, x2, . . . , xK)

I Open questions:
I How to design a suitable

basis?
I How many basis functions to

pick?

I Gaussian processes: accurate
and flexible regression method
yielding predictions alongside
with error bars.

0 2 4 6 8 10
X

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y

Why Gaussian processes?

I So far: linear models with a
finite number of basis functions,
e.g. φ(x) = (1, x, x2, . . . , xK)

I Open questions:
I How to design a suitable

basis?
I How many basis functions to

pick?

I Gaussian processes: accurate
and flexible regression method
yielding predictions alongside
with error bars.

0 2 4 6 8 10
X

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Y

Making predictions with variance component models

I Linear model, accounting for a set of measured SNPs X

p(y |X,θ, σ2) = N
(
y |

S∑
s=1

xsθs, σ
2I

)
I Prediction at unseen test input given max. likelihood weight:

p(y? |x?, θ̂) = N
(
y? | x?θ̂, σ2

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
θ
N
(
y | Xθ, σ2I

)
N
(
θ | 0, σ2gI

)
= N

y | 0, σ2gXX>︸ ︷︷ ︸
K

+σ2I


I Making predictions with variance component models?

Making predictions with variance component models

I Linear model, accounting for a set of measured SNPs X

p(y |X,θ, σ2) = N
(
y |

S∑
s=1

xsθs, σ
2I

)
I Prediction at unseen test input given max. likelihood weight:

p(y? |x?, θ̂) = N
(
y? | x?θ̂, σ2

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
θ
N
(
y | Xθ, σ2I

)
N
(
θ | 0, σ2gI

)
= N

y | 0, σ2gXX>︸ ︷︷ ︸
K

+σ2I


I Making predictions with variance component models?

Making predictions with variance component models

I Linear model, accounting for a set of measured SNPs X

p(y |X,θ, σ2) = N
(
y |

S∑
s=1

xsθs, σ
2I

)
I Prediction at unseen test input given max. likelihood weight:

p(y? |x?, θ̂) = N
(
y? | x?θ̂, σ2

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
θ
N
(
y | Xθ, σ2I

)
N
(
θ | 0, σ2gI

)
= N

y | 0, σ2gXX>︸ ︷︷ ︸
K

+σ2I


I Making predictions with variance component models?

Making predictions with variance component models

I Linear model, accounting for a set of measured SNPs X

p(y |X,θ, σ2) = N
(
y |

S∑
s=1

xsθs, σ
2I

)
I Prediction at unseen test input given max. likelihood weight:

p(y? |x?, θ̂) = N
(
y? | x?θ̂, σ2

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
θ
N
(
y | Xθ, σ2I

)
N
(
θ | 0, σ2gI

)
= N

y | 0, σ2gXX>︸ ︷︷ ︸
K

+σ2I


I Making predictions with variance component models?

Further reading

I C. E. Rasmussen, C. K. Williams
Gaussian processes for machine learning

I Comprehensive and freely available introduction (Appendix!).

I Christopher M. Bishop: Pattern Recognition and Machine learning

Outline

Outline

Motivation

Intuitive approach

Function space view

The Gaussian distribution

I Gaussian processes are merely based on the good old Gaussian

N
(
x | µ, K

)
=

1√
|2π K |

exp

[
−1

2
(x− µ)> K −1

(x− µ)
]

I Covariance matrix or kernel matrix

A 2D Gaussian

I Probability contour

I Samples

−3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3

y2

K =

[
1 0.6

0.6 1

]

A 2D Gaussian

I Probability contour

I Samples

−3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3

y2

K =

[
1 0.6

0.6 1

]

A 2D Gaussian
Varying the covariance matrix

−3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3

y2

K =

[
1 0.14

0.14 1

] −3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3

y2

K =

[
1 0.6

0.6 1

] −3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3

y2

K =

[
1 -0.9

-0.9 1

]

A 2D Gaussian
Inference

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

A 2D Gaussian
Inference

− 3 − 2 − 1 0 1 2 3
− 3

− 2

− 1

0

1

2

3

A 2D Gaussian
Inference

− 3 − 2 − 1 0 1 2 3− 3

− 2

− 1

0

1

2

3

Inference

I Joint probability p(y1, y2 |K) = N ([y1, y2] | 0,K)

I Conditional probability

p(y2 | y1,K) =
p(y1, y2 |K)

p(y1 |K)

∝ exp

{
−1

2
[y1, y2]K

−1
[
y1
y2

]}
I Completing the square yields a Gaussian with non-zero as posterior

for y2.

Inference
Gaussian conditioning in 2D

p(y2 | y1,K) =
p(y1, y2 |K)

p(y1 |K)
∝ exp

{
−1

2
[y1, y2]K

−1
[
y1
y2

]}
= exp{−1

2

[
y21K

−1
1,1 + y22K

−1
2,2 + 2y1K

−1
1,2y2

]
}

= exp{−1

2

[
y22K

−1
2,2 + 2y2K

−1
1,2y1 + C

]
}

= Z exp{−1

2
K−12,2

[
y22 + 2y2

K−11,2y1

K−12,2

]
}

= Z exp{−1

2
K−12,2

[
y22 + 2y2

K−11,2y1

K−12,2

+
K−11,2y1

K−12,2

2]
+

1

2
K−12,2

K−11,2y1

K−12,2

2

}

= Z ′ exp{−1

2
K−12,2︸ ︷︷ ︸
σ2

[
y2 +

K−11,2y1

K−12,2︸ ︷︷ ︸
−µ

]2} ∝ N (y2 | µ, σ2
)

Extending the idea to higher dimensions

I Let us interpret y1 and y2 as outputs in a regression setting.

I We can introduce an additional 3rd point.

1 2
X

0

1

2

3

4

5

Y

I Now P ([y1, y2, y3] |K3) = N ([y1, y2, y3] | 0,K3), where K3 is now
a 3 x 3 covariance matrix!

Extending the idea to higher dimensions

I Let us interpret y1 and y2 as outputs in a regression setting.

I We can introduce an additional 3rd point.

1 2
X

0

1

2

3

4

5

Y

I Now P ([y1, y2, y3] |K3) = N ([y1, y2, y3] | 0,K3), where K3 is now
a 3 x 3 covariance matrix!

Extending the idea to higher dimensions

I Let us interpret y1 and y2 as outputs in a regression setting.

I We can introduce an additional 3rd point.

0 1 2
X

0

1

2

3

4

5

Y

I Now P ([y1, y2, y3] |K3) = N ([y1, y2, y3] | 0,K3), where K3 is now
a 3 x 3 covariance matrix!

Extending the idea to higher dimensions

I Let us interpret y1 and y2 as outputs in a regression setting.

I We can introduce an additional 3rd point.

0 1 2
X

0

1

2

3

4

5

Y

I Now P ([y1, y2, y3] |K3) = N ([y1, y2, y3] | 0,K3), where K3 is now
a 3 x 3 covariance matrix!

Constructing Covariance Matrices

I Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

I Issue: how to construct a good covariance matrix?

I A simple heuristics

K2 =

[
1 0.6

0.6 1

]

K3 =

 1 0.6 0
0.6 1 0.6
0 0.6 1


I Note:

I The ordering of the points y1, y2, y3 matters.
I Important to ensure that covariance matrices remain positive definite

(matrix inversion).

Constructing Covariance Matrices

I Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

I Issue: how to construct a good covariance matrix?

I A simple heuristics

K2 =

[
1 0.6

0.6 1

]

K3 =

 1 0.6 0
0.6 1 0.6
0 0.6 1


I Note:

I The ordering of the points y1, y2, y3 matters.
I Important to ensure that covariance matrices remain positive definite

(matrix inversion).

Constructing Covariance Matrices

I Analogously we can look at the joint probability for arbitrary many
points and obtain predictions.

I Issue: how to construct a good covariance matrix?

I A simple heuristics

K2 =

[
1 0.6

0.6 1

]

K3 =

 1 0.6 0
0.6 1 0.6
0 0.6 1


I Note:

I The ordering of the points y1, y2, y3 matters.
I Important to ensure that covariance matrices remain positive definite

(matrix inversion).

Constructing Covariance Matrices
A general recipe

I Use a covariance function (kernel function) to construct K:

Ki,j = k(xi, xj ;ΘK)

I Example: The linear covariance function corresponds to a variance
component model

kLIN(xi, xj , ;A) = A2 xi · xj
I Example: The squared exponential covariance function embodies the

belief that points further apart are less correlated:

kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I ΘK = {A,L}: hyperparameters.

I A2 Overall correlation, amplitude L2 Scaling parameter, smoothness

I Denote the covariance matrix for a set of inputs X = {x1, . . . ,xN}
as: KX,X(ΘK)

Constructing Covariance Matrices
A general recipe

I Use a covariance function (kernel function) to construct K:

Ki,j = k(xi, xj ;ΘK)

I Example: The linear covariance function corresponds to a variance
component model

kLIN(xi, xj , ;A) = A2 xi · xj
I Example: The squared exponential covariance function embodies the

belief that points further apart are less correlated:

kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I ΘK = {A,L}: hyperparameters.

I A2 Overall correlation, amplitude L2 Scaling parameter, smoothness

I Denote the covariance matrix for a set of inputs X = {x1, . . . ,xN}
as: KX,X(ΘK)

Constructing Covariance Matrices
A general recipe

I Use a covariance function (kernel function) to construct K:

Ki,j = k(xi, xj ;ΘK)

I Example: The linear covariance function corresponds to a variance
component model

kLIN(xi, xj , ;A) = A2 xi · xj
I Example: The squared exponential covariance function embodies the

belief that points further apart are less correlated:

kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I ΘK = {A,L}: hyperparameters.

I A2 Overall correlation, amplitude L2 Scaling parameter, smoothness

I Denote the covariance matrix for a set of inputs X = {x1, . . . ,xN}
as: KX,X(ΘK)

Constructing Covariance Matrices
A general recipe

I Use a covariance function (kernel function) to construct K:

Ki,j = k(xi, xj ;ΘK)

I Example: The linear covariance function corresponds to a variance
component model

kLIN(xi, xj , ;A) = A2 xi · xj
I Example: The squared exponential covariance function embodies the

belief that points further apart are less correlated:

kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I ΘK = {A,L}: hyperparameters.

I A2 Overall correlation, amplitude L2 Scaling parameter, smoothness

I Denote the covariance matrix for a set of inputs X = {x1, . . . ,xN}
as: KX,X(ΘK)

Constructing Covariance Matrices
A general recipe

I Use a covariance function (kernel function) to construct K:

Ki,j = k(xi, xj ;ΘK)

I Example: The linear covariance function corresponds to a variance
component model

kLIN(xi, xj , ;A) = A2 xi · xj
I Example: The squared exponential covariance function embodies the

belief that points further apart are less correlated:

kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I ΘK = {A,L}: hyperparameters.

I A2 Overall correlation, amplitude L2 Scaling parameter, smoothness

I Denote the covariance matrix for a set of inputs X = {x1, . . . ,xN}
as: KX,X(ΘK)

Constructing Covariance Matrices
GP samples using the squared exponential covariance function

−6 −4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

A=1,L=1
A=1,L=0.5
A=3,L=1

10D Gaussian

Constructing Covariance Matrices
GP samples using the squared exponential covariance function

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

A=1,L=1
A=1,L=0.5
A=3,L=1

500D Gaussian

Constructing Covariance Matrices
GP samples using the squared exponential covariance function

−3 −2 −1 0 1 2 3
y1

−3

−2

−1

0

1

2

3
y2

Reminder: Every function line corresponds to a sample drawn from this 2D
Gaussian!

Drawing samples from a Gaussian processes

For each sample do:

I Choose discretization of x axes X = {x0, x1, . . . , xN}.
I Evaluate covariance K =KX,X(ΘK)

Math

I Draw from

p(y |K) = N (y | 0,K)

“Matlab”

I Draw independent Gaussian
variables

ỹ = randn(N, 1)

I Rotate with
√
K

y = chol(K) · ỹ

Drawing samples from a Gaussian processes

For each sample do:

I Choose discretization of x axes X = {x0, x1, . . . , xN}.
I Evaluate covariance K =KX,X(ΘK)

Math

I Draw from

p(y |K) = N (y | 0,K)

“Matlab”

I Draw independent Gaussian
variables

ỹ = randn(N, 1)

I Rotate with
√
K

y = chol(K) · ỹ

Drawing samples from a Gaussian processes

For each sample do:

I Choose discretization of x axes X = {x0, x1, . . . , xN}.
I Evaluate covariance K =KX,X(ΘK)

Math

I Draw from

p(y |K) = N (y | 0,K)

“Matlab”

I Draw independent Gaussian
variables

ỹ = randn(N, 1)

I Rotate with
√
K

y = chol(K) · ỹ

Why this all works

I Consistency of the 10D and 500D Gaussian.
I A small quiz:

I Let y1, y2, y3 have covariance matrix

K3 =

 1 0.5 0
0.5 1 0.5
0 0.5 1

 and inverse K−13 =

 1.5 -1 0.5
-1 2 -1
0.5 -1 1.5


i.e. p({y1, y2, y3} |K3) = N ({y1, y2, y3} | 0,K3)

I Now focus on the variables y1, y2, integrating out y3.

p({y1, y2}) =
∫
y3

N ({y1, y2, y3} | 0,K3)

= N ({y1, y2} | 0,K2)

Which of the following statements is true

a) K2 =

[
1 5
5 1

]
b) K−12 =

[
1.5 -1
-1 2

]

Why this all works

I Consistency of the 10D and 500D Gaussian.
I A small quiz:

I Let y1, y2, y3 have covariance matrix

K3 =

 1 0.5 0
0.5 1 0.5
0 0.5 1

 and inverse K−13 =

 1.5 -1 0.5
-1 2 -1
0.5 -1 1.5


i.e. p({y1, y2, y3} |K3) = N ({y1, y2, y3} | 0,K3)

I Now focus on the variables y1, y2, integrating out y3.

p({y1, y2}) =
∫
y3

N ({y1, y2, y3} | 0,K3)

= N ({y1, y2} | 0,K2)

Which of the following statements is true

a) K2 =

[
1 5
5 1

]
b) K−12 =

[
1.5 -1
-1 2

]

Why this all works
GP as infinite object (philosophical)

I A valid covariance function k(x, x′) defines recipe to calculate
covariance for any choice of inputs.

I Prior on functions: all points on the real line are inputs; KR,R is an
infinite object!

I Numerical implementation: choose finite subset X and evaluate on a
reduced, finite KX,X , exploiting consistency rule.

Why this all works
GP as infinite object (philosophical)

I A valid covariance function k(x, x′) defines recipe to calculate
covariance for any choice of inputs.

I Prior on functions: all points on the real line are inputs; KR,R is an
infinite object!

I Numerical implementation: choose finite subset X and evaluate on a
reduced, finite KX,X , exploiting consistency rule.

Why this all works
GP as infinite object (philosophical)

I A valid covariance function k(x, x′) defines recipe to calculate
covariance for any choice of inputs.

I Prior on functions: all points on the real line are inputs; KR,R is an
infinite object!

I Numerical implementation: choose finite subset X and evaluate on a
reduced, finite KX,X , exploiting consistency rule.

Outline

Motivation

Intuitive approach

Function space view

Function space view

So far

1. Joint Gaussian distribution over the set of all outputs y.

2. Covariance function as a recipe to construct a suitable covariance
matrices from the corresponding inputs X.

Function space view
The Gaussian process as a prior on functions

I Covariance function and hyperparameters reflect the prior belief on
function smoothness, lengthscales etc.

I The general recipe allows a joint Gaussian to be constructed for an
arbitrary selection of input locations X.

Prior on infinite function f(x)

p(f(x)) = GP(f(x) | k)

Prior on function values
f = (f1, . . . , fN)

p(f |X,ΘK) = N (f | 0,KX,X(ΘK))

Noise-free observations

I Given noise-free training data D = {xn, fn}Nn=1

I Want to make predictions f? at test points X?

I Joint distribution of f and f? is

p([f ,f?] |X,X?,ΘK) = N
(
[f ,f?] | 0,

[
KX,X KX,X?

KX?,X KX?,X?

])
(All kernel matrices K depend on hyperparameters ΘK which are dropped

for brevity.)

I Real data is rarely noise-free.

Noise-free observations

I Given noise-free training data D = {xn, fn}Nn=1

I Want to make predictions f? at test points X?

I Joint distribution of f and f? is

p([f ,f?] |X,X?,ΘK) = N
(
[f ,f?] | 0,

[
KX,X KX,X?

KX?,X KX?,X?

])
(All kernel matrices K depend on hyperparameters ΘK which are dropped

for brevity.)

I Real data is rarely noise-free.

Inference

I Given observed noisy data D = {X,y}, the joint probability over
latent function values f and f? given y is

p([f ,f?] |X,X?,y,ΘK, σ
2) ∝

Prior︷ ︸︸ ︷
N ([f ,f?] | 0,K)

×
N∏
n=1

N
(
yn | fn, σ2

)
︸ ︷︷ ︸

Likelihood

,

Inference

I Given observed noisy data D = {X,y}, the joint probability over
latent function values f and f? given y is

p([f ,f?] |X,X?,y,ΘK, σ
2) ∝

Prior︷ ︸︸ ︷
N
(
[f ,f?] | 0,

[
KX,X KX,X?

KX?,X KX?,X?

])

×
N∏
n=1

N
(
yn | fn, σ2

)
︸ ︷︷ ︸

Likelihood

,

Inference

I Applying “Gaussian calculus”, integrating out f yields

p([y,f?] |X,X?,y,ΘK, σ
2) ∝ N

(
[y,f?] | 0,

[
KX,X + σ2I KX,X?

KX?,X KX?,X?

])
I Note: Assuming noisy instead of perfect observation noise merely

corresponds to adding a diagonal component to the self-covariance
KX,X .

Inference

I Applying “Gaussian calculus”, integrating out f yields

p([y,f?] |X,X?,y,ΘK, σ
2) ∝ N

(
[y,f?] | 0,

[
KX,X + σ2I KX,X?

KX?,X KX?,X?

])
I Note: Assuming noisy instead of perfect observation noise merely

corresponds to adding a diagonal component to the self-covariance
KX,X .

Making predictions

I The predictive distribution follows from the joint distribution by
completing the square (conditioning)

p([y,f?] |X,X?,y,ΘK, σ
2) ∝ N

(
[y,f?] | 0,

[
KX,X + σ2I KX,X?

KX?,X KX?,X?

])
I Gaussian predictive distribution for f?

p(f? |X,y,X?,ΘK, σ
2) = N (f? | µ?,Σ?)with

µ? =KX?,X

[
KX,X + σ2I

]−1
y

Σ? =KX?,X? −KX?,X

[
KX,X + σ2I

]−1
KX,X?

Making predictions

I The predictive distribution follows from the joint distribution by
completing the square (conditioning)

p([y,f?] |X,X?,y,ΘK, σ
2) ∝ N

(
[y,f?] | 0,

[
KX,X + σ2I KX,X?

KX?,X KX?,X?

])
I Gaussian predictive distribution for f?

p(f? |X,y,X?,ΘK, σ
2) = N (f? | µ?,Σ?)with

µ? =KX?,X

[
KX,X + σ2I

]−1
y

Σ? =KX?,X? −KX?,X

[
KX,X + σ2I

]−1
KX,X?

Making predictions
Example

0 2 4 6 8 10
X

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Y

Making predictions
Example

0 2 4 6 8 10
X

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Y

Learning hyperparameters

1. Fixed covariance matrix: p(y |K)

2. Constructed covariance matrix: {K}i,j = k(xi,xj ;ΘK)

3. Can we learn the hyperparameters ΘK?

Learning hyperparameters

I Formally we are interested in the posterior

p(ΘK | D) ∝ p (y |X,ΘK) p(ΘK)

I Inference is analytically intractable!
I MAP estimate instead of a full posterior. Set ΘK to the most

probable hyperparameter settings:

Θ̂K = argmax
ΘK

ln [p (y |X,ΘK) p(ΘK)]

= argmax
ΘK

lnN
(
y | 0,KX,X(ΘK) + σ2I

)
+ ln p(ΘK)

= argmax
ΘK

[
− 1

2
log det[KX,X(ΘK) + σ2I]

− 1

2
y>[KX,X(ΘK) + σ2I]−1y − N

2
log 2π + ln p(ΘK)

]
I Optimization can be carried out using standard optimization

techniques.

Learning hyperparameters

I Formally we are interested in the posterior

p(ΘK | D) ∝ p (y |X,ΘK) p(ΘK)

I Inference is analytically intractable!
I MAP estimate instead of a full posterior. Set ΘK to the most

probable hyperparameter settings:

Θ̂K = argmax
ΘK

ln [p (y |X,ΘK) p(ΘK)]

= argmax
ΘK

lnN
(
y | 0,KX,X(ΘK) + σ2I

)
+ ln p(ΘK)

= argmax
ΘK

[
− 1

2
log det[KX,X(ΘK) + σ2I]

− 1

2
y>[KX,X(ΘK) + σ2I]−1y − N

2
log 2π + ln p(ΘK)

]
I Optimization can be carried out using standard optimization

techniques.

Learning hyperparameters

I Formally we are interested in the posterior

p(ΘK | D) ∝ p (y |X,ΘK) p(ΘK)

I Inference is analytically intractable!
I MAP estimate instead of a full posterior. Set ΘK to the most

probable hyperparameter settings:

Θ̂K = argmax
ΘK

ln [p (y |X,ΘK) p(ΘK)]

= argmax
ΘK

lnN
(
y | 0,KX,X(ΘK) + σ2I

)
+ ln p(ΘK)

= argmax
ΘK

[
− 1

2
log det[KX,X(ΘK) + σ2I]

− 1

2
y>[KX,X(ΘK) + σ2I]−1y − N

2
log 2π + ln p(ΘK)

]
I Optimization can be carried out using standard optimization

techniques.

Choosing covariance functions

I The covariance function embodies the prior belief about functions.

I Example: linear regression

yn = wxn + c+ ψn

I Covariance function denote covariation

k(xn, x
′
n) =

〈
yny
′
n

〉
=
〈
(wxn + c+ ψn)(wx

′
n + c+ ψ′n)

〉
= w2 · xnx′n + c2︸ ︷︷ ︸

kernel: k(xn,x′
n)

+δn,n′ψ2
n

Choosing covariance functions
Multidimensional input space

I Generalise squared exponential covariance function to multiple
dimensions

I 1 Dimension kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I D Dimensions dD

kSE(xi,xj , ;A,L) = A2 exp

−0.5
D∑
d=1

(xdi − xdj)2

L2
d


I Lengthscale parameters Ld denote “relevance” of a particular data

dimension.
I Large Ld correspond to irrelevant dimensions.

Choosing covariance functions
Multidimensional input space

I Generalise squared exponential covariance function to multiple
dimensions

I 1 Dimension kSE(xi, xj , ;A,L) = A2 exp

{
−0.5 · (xi − xj)

2

L2

}
I D Dimensions dD

kSE(xi,xj , ;A,L) = A2 exp

−0.5
D∑
d=1

(xdi − xdj)2

L2
d


I Lengthscale parameters Ld denote “relevance” of a particular data

dimension.
I Large Ld correspond to irrelevant dimensions.

Choosing covariance functions
2D regression

X1

2 3 4 5
6

7

X2

2
3

4
5

6
7

Y

2

3

4

5

Choosing covariance functions
2D regression

X1

2 3 4 5 6
7

X2

2
3

4
5

6
7

Y

2

3

4

5

6

Choosing covariance functions
Any kernel will do

I Established kernels are all valid covariance functions, allowing for a
wide range of possible input domains X:

I Graph kernels (molecules)
I Kernels defined on strings (DNA sequences)

Choosing covariance functions
Combining existing covariance functions

I The sum of two covariances functions is itself a valid covariance
function

kS(x, x
′) = k1(x, x

′) + k2(x, x
′)

I The product of two covariance functions is itself a valid covariance
function

kP (x, x
′) = k1(x, x

′) · k2(x, x′)

GPs versus variance component models

Variance component

I Linear model

p(y |X,θ, σ2)

= N
(
y | Φ(X) · θ, σ2I

)
I Marginalize over θ

p(y |X, σ2
g , σ

2)

= N
(
y |0, σ2

gΦ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I
)

Gaussian process

I Define covariance through
“recipe” KX,X(ΘK)

I Implies marginal likelihood

p(y |X,ΘK, σ
2)

= N
(
y |0,KX,X(ΘK)︸ ︷︷ ︸

K

+σ2I
)

I Any feature map Φ implies a valid covariance function KX,X(ΘK).

I The inverse is not necessarily true!

GPs versus variance component models

Variance component

I Linear model

p(y |X,θ, σ2)

= N
(
y | Φ(X) · θ, σ2I

)
I Marginalize over θ

p(y |X, σ2
g , σ

2)

= N
(
y |0, σ2

gΦ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I
)

Gaussian process

I Define covariance through
“recipe” KX,X(ΘK)

I Implies marginal likelihood

p(y |X,ΘK, σ
2)

= N
(
y |0,KX,X(ΘK)︸ ︷︷ ︸

K

+σ2I
)

I Any feature map Φ implies a valid covariance function KX,X(ΘK).

I The inverse is not necessarily true!

GPs versus variance component models

Variance component

I Linear model

p(y |X,θ, σ2)

= N
(
y | Φ(X) · θ, σ2I

)
I Marginalize over θ

p(y |X, σ2
g , σ

2)

= N
(
y |0, σ2

gΦ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I
)

Gaussian process

I Define covariance through
“recipe” KX,X(ΘK)

I Implies marginal likelihood

p(y |X,ΘK, σ
2)

= N
(
y |0,KX,X(ΘK)︸ ︷︷ ︸

K

+σ2I
)

I Any feature map Φ implies a valid covariance function KX,X(ΘK).

I The inverse is not necessarily true!

GPs versus variance component models

Variance component

I Linear model

p(y |X,θ, σ2)

= N
(
y | Φ(X) · θ, σ2I

)
I Marginalize over θ

p(y |X, σ2
g , σ

2)

= N
(
y |0, σ2

gΦ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I
)

Gaussian process

I Define covariance through
“recipe” KX,X(ΘK)

I Implies marginal likelihood

p(y |X,ΘK, σ
2)

= N
(
y |0,KX,X(ΘK)︸ ︷︷ ︸

K

+σ2I
)

I Any feature map Φ implies a valid covariance function KX,X(ΘK).

I The inverse is not necessarily true!

	Motivation
	Intuitive approach
	Function space view

