Machine Learning and Statistics in Genetics and Genomics VI: Introduction to Gaussian Processes

Christoph Lippert

Microsoft Research eScience group Research

Los Angeles , USA

Current topics in computational biology UCLA Winter quarter 2014

Motivation

Intuitive approach

Function space view

Outline

Outline

Motivation

Intuitive approach

Function space view

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Why Gaussian processes?

- So far: linear models with a finite number of basis functions, e.g. φ(x) = (1, x, x²,...,x^K)
- Open questions:
 - How to design a suitable basis?
 - How many basis functions to pick?

 Gaussian processes: accurate and flexible regression method yielding predictions alongside with error bars.

Why Gaussian processes?

- So far: linear models with a finite number of basis functions, e.g. φ(x) = (1, x, x²,...,x^K)
- Open questions:
 - How to design a suitable basis?
 - How many basis functions to pick?
- Gaussian processes: accurate and flexible regression method yielding predictions alongside with error bars.

Why Gaussian processes?

- So far: linear models with a finite number of basis functions, e.g. φ(x) = (1, x, x², ..., x^K)
- Open questions:
 - How to design a suitable basis?
 - How many basis functions to pick?
- Gaussian processes: accurate and flexible regression method yielding predictions alongside with error bars.

Linear model, accounting for a set of measured SNPs X

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \theta_s, \sigma^2 \boldsymbol{I}\right)$$

► Prediction at unseen test input given max. likelihood weight: $p(y^* | \boldsymbol{x}^*, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^* | \boldsymbol{x}^* \hat{\boldsymbol{\theta}}, \sigma^2\right)$

Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\theta}, \sigma^{2}\boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{0}, \sigma_{g}^{2}\boldsymbol{I}\right)$$
$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_{g}^{2}\boldsymbol{X}\boldsymbol{X}^{\top}}_{\boldsymbol{K}} + \sigma^{2}\boldsymbol{I}\right)$$

Linear model, accounting for a set of measured SNPs X

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \theta_s, \sigma^2 \boldsymbol{I}\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^* | \boldsymbol{x}^*, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^* | \boldsymbol{x}^* \hat{\boldsymbol{\theta}}, \sigma^2\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\theta}, \sigma^{2}\boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \boldsymbol{0}, \sigma_{g}^{2}\boldsymbol{I}\right)$$
$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_{g}^{2}\boldsymbol{X}\boldsymbol{X}^{\top}}_{\boldsymbol{K}} + \sigma^{2}\boldsymbol{I}\right)$$

 \blacktriangleright Linear model, accounting for a set of measured SNPs X

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \theta_s, \sigma^2 \boldsymbol{I}\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^* | \boldsymbol{x}^*, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^* | \boldsymbol{x}^* \hat{\boldsymbol{\theta}}, \sigma^2\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\theta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\theta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_{g}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

 \blacktriangleright Linear model, accounting for a set of measured SNPs X

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \theta_s, \sigma^2 \boldsymbol{I}\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^* | \boldsymbol{x}^*, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^* | \boldsymbol{x}^* \hat{\boldsymbol{\theta}}, \sigma^2\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\theta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\theta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_{g}^{2} \boldsymbol{X} \boldsymbol{X}^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

Further reading

- C. E. Rasmussen, C. K. Williams Gaussian processes for machine learning
 - Comprehensive and freely available introduction (Appendix!).
- ► Christopher M. Bishop: Pattern Recognition and Machine learning

Outline

Outline

Motivation

Intuitive approach

Function space view

(4日) (個) (目) (目) (目) (の)

The Gaussian distribution

Gaussian processes are merely based on the good old Gaussian

$$\mathcal{N}\left(oldsymbol{x}\midoldsymbol{\mu},oldsymbol{K}
ight) = rac{1}{\sqrt{|2\pioldsymbol{K}|}} \exp\left[-rac{1}{2}(oldsymbol{x}-oldsymbol{\mu})^{ op}oldsymbol{K}^{-1}(oldsymbol{x}-oldsymbol{\mu})
ight]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Covariance matrix or kernel matrix

Probability contour

Samples

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Probability contour
- Samples

・ロト ・聞ト ・ヨト ・ヨト

æ

Varying the covariance matrix

(日)、

- 3

Inference

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Inference

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Inference

・ロト・日本・日本・日本・日本・日本

Inference

- ▶ Joint probability $p(y_1, y_2 \mid \mathbf{K}) = \mathcal{N}([y_1, y_2] \mid \mathbf{0}, \mathbf{K})$
- Conditional probability

$$p(y_2 \mid y_1, \mathbf{K}) = \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})}$$
$$\propto \exp\left\{-\frac{1}{2}[y_1, y_2] \mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 Completing the square yields a Gaussian with non-zero as posterior for y₂.

Inference

Gaussian conditioning in 2D

$$\begin{split} p(y_2 \mid y_1, \mathbf{K}) &= \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_1, y_2] \, \mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_1^2 \mathbf{K}_{1,1}^{-1} + y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_1 \mathbf{K}_{1,2}^{-1} y_2 \end{bmatrix}\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_2 \mathbf{K}_{1,2}^{-1} y_1 + C \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix} + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}}^2 \} \\ &= Z' \exp\{-\frac{1}{2} \underbrace{\mathbf{K}_{2,2}^{-1}}_{\sigma^2} \begin{bmatrix} y_2 + \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}^2\} \propto \mathcal{N}\left(y_2 \mid \mu, \sigma^2\right) \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Let us interpret y_1 and y_2 as outputs in a regression setting.
- We can introduce an additional 3rd point.

Now P([y₁, y₂, y₃] | K₃) = N ([y₁, y₂, y₃] | 0, K₃), where K₃ is now a 3 x 3 covariance matrix!

- Let us interpret y_1 and y_2 as outputs in a regression setting.
- We can introduce an additional 3rd point.

Now P([y₁, y₂, y₃] | K₃) = N ([y₁, y₂, y₃] | 0, K₃), where K₃ is now a 3 x 3 covariance matrix!

- Let us interpret y_1 and y_2 as outputs in a regression setting.
- ▶ We can introduce an additional 3rd point.

Now P([y₁, y₂, y₃] | K₃) = N ([y₁, y₂, y₃] | 0, K₃), where K₃ is now a 3 x 3 covariance matrix!

- Let us interpret y_1 and y_2 as outputs in a regression setting.
- We can introduce an additional 3rd point.

Now $P([y_1, y_2, y_3] | \mathbf{K}_3) = \mathcal{N}([y_1, y_2, y_3] | \mathbf{0}, \mathbf{K}_3)$, where \mathbf{K}_3 is now a 3 x 3 covariance matrix!

- Analogously we can look at the joint probability for arbitrary many points and obtain predictions.
- Issue: how to construct a good covariance matrix?

• A simple heuristics

$$egin{aligned} m{K}_2 = \left[egin{array}{ccc} 1 & 0.6 \ 0.6 & 1 \end{array}
ight] \ m{K}_3 = \left[egin{array}{ccc} 1 & 0.6 & 0 \ 0.6 & 1 & 0.6 \ 0 & 0.6 & 1 \end{array}
ight] \end{aligned}$$

Note:

- The ordering of the points y_1, y_2, y_3 matters.
- Important to ensure that covariance matrices remain positive definite (matrix inversion).

- Analogously we can look at the joint probability for arbitrary many points and obtain predictions.
- Issue: how to construct a good covariance matrix?
- A simple heuristics

$$egin{aligned} m{K}_2 = \left[egin{array}{ccc} 1 & 0.6 \ 0.6 & 1 \end{array}
ight] \ m{K}_3 = \left[egin{array}{ccc} 1 & 0.6 & 0 \ 0.6 & 1 & 0.6 \ 0 & 0.6 & 1 \end{array}
ight] \end{aligned}$$

- Note:
 - ▶ The ordering of the points *y*₁, *y*₂, *y*₃ matters.
 - Important to ensure that covariance matrices remain positive definite (matrix inversion).

- Analogously we can look at the joint probability for arbitrary many points and obtain predictions.
- Issue: how to construct a good covariance matrix?
- A simple heuristics

$$egin{aligned} m{K}_2 &= \left[egin{array}{ccc} 1 & 0.6 \ 0.6 & 1 \end{array}
ight] \ m{K}_3 &= \left[egin{array}{ccc} 1 & 0.6 & 0 \ 0.6 & 1 & 0.6 \ 0 & 0.6 & 1 \end{array}
ight] \end{aligned}$$

- Note:
 - The ordering of the points y_1, y_2, y_3 matters.
 - Important to ensure that covariance matrices remain positive definite (matrix inversion).

A general recipe

▶ Use a covariance function (kernel function) to construct *K*:

$$\boldsymbol{K}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$$

Example: The linear covariance function corresponds to a variance component model

$$k_{\mathsf{LIN}}(x_i, x_j, ; A) = A^2 x_i \cdot x_j$$

Example: The squared exponential covariance function embodies the belief that points further apart are less correlated:

$$k_{\text{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

• $\boldsymbol{\Theta}_{\mathsf{K}} = \{A, L\}$: hyperparameters.

► A² Overall correlation, amplitude L² Scaling parameter, smoothness
 ► Denote the covariance matrix for a set of inputs X = {x₁,...,x_N} as: K_{X,X}(Θ_K)

A general recipe

▶ Use a covariance function (kernel function) to construct *K*:

$$\boldsymbol{K}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$$

 Example: The linear covariance function corresponds to a variance component model

$$k_{\mathsf{LIN}}(x_i, x_j, ; A) = \boxed{A^2} x_i \cdot x_j$$

Example: The squared exponential covariance function embodies the belief that points further apart are less correlated:

$$k_{\text{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

• $\boldsymbol{\Theta}_{\mathsf{K}} = \{A, L\}$: hyperparameters.

► A² Overall correlation, amplitude L² Scaling parameter, smoothness
 ► Denote the covariance matrix for a set of inputs X = {x₁,...,x_N} as: K_{X,X}(Θ_K)

A general recipe

► Use a covariance function (kernel function) to construct *K*:

$$\boldsymbol{K}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$$

 Example: The linear covariance function corresponds to a variance component model

$$k_{\mathsf{LIN}}(x_i, x_j, ; A) = \boxed{A^2} x_i \cdot x_j$$

Example: The squared exponential covariance function embodies the belief that points further apart are less correlated:

$$k_{\mathsf{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

• $\boldsymbol{\Theta}_{\mathsf{K}} = \{A, L\}$: hyperparameters.

► A² Overall correlation, amplitude L² Scaling parameter, smoothness
 ► Denote the covariance matrix for a set of inputs X = {x₁,...,x_N} as: K_{X,X}(Θ_K)

A general recipe

► Use a covariance function (kernel function) to construct *K*:

$$\boldsymbol{K}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$$

 Example: The linear covariance function corresponds to a variance component model

$$k_{\mathsf{LIN}}(x_i, x_j, ; A) = \boxed{A^2} x_i \cdot x_j$$

Example: The squared exponential covariance function embodies the belief that points further apart are less correlated:

$$k_{\mathsf{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

- $\boldsymbol{\Theta}_{\mathsf{K}} = \{A, L\}$: hyperparameters.
 - A^2 Overall correlation, amplitude L^2 Scaling parameter, smoothness • Denote the covariance matrix for a set of inputs $X = \{x_1, \ldots, x_N\}$ as: $K_{X,X}(\Theta_{\mathsf{K}})$

A general recipe

► Use a covariance function (kernel function) to construct *K*:

$$\boldsymbol{K}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$$

 Example: The linear covariance function corresponds to a variance component model

$$k_{\mathsf{LIN}}(x_i, x_j, ; A) = \boxed{A^2 x_i \cdot x_j}$$

Example: The squared exponential covariance function embodies the belief that points further apart are less correlated:

$$k_{\text{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

- $\boldsymbol{\Theta}_{\mathsf{K}} = \{A, L\}$: hyperparameters.
- A² Overall correlation, amplitude L² Scaling parameter, smoothness
 Denote the covariance matrix for a set of inputs X = {x₁,...,x_N} as: K_{X,X}(Θ_K)

GP samples using the squared exponential covariance function

10D Gaussian

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Constructing Covariance Matrices

GP samples using the squared exponential covariance function

500D Gaussian

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Constructing Covariance Matrices

GP samples using the squared exponential covariance function

Reminder: Every function line corresponds to a sample drawn from this 2D Gaussian!

Drawing samples from a Gaussian processes

For each sample do:

- Choose discretization of x axes $X = \{x_0, x_1, \dots, x_N\}$.
- Evaluate covariance $\boldsymbol{K} = \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}}(\boldsymbol{\varTheta}_{\mathsf{K}})$

"Matlab"

 Draw independent Gaussian variables

 $\tilde{\pmb{y}} = \mathsf{randn}(N,1)$

• Rotate with \sqrt{K}

 $oldsymbol{y} = \mathsf{chol}(oldsymbol{K}) \cdot \widetilde{oldsymbol{y}}$

Drawing samples from a Gaussian processes

For each sample do:

- Choose discretization of x axes $X = \{x_0, x_1, \dots, x_N\}$.
- Evaluate covariance $\boldsymbol{K} = \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}}(\boldsymbol{\varTheta}_{\mathsf{K}})$

Math

Draw from

 $p(\boldsymbol{y} \mid \boldsymbol{K}) = \mathcal{N}\left(\left. \boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{K} \right. \right)$

"Matlab"

 Draw independent Gaussian variables

 $\tilde{\pmb{y}} = \mathsf{randn}(N,1)$

• Rotate with \sqrt{K}

 $oldsymbol{y} = \mathsf{chol}(oldsymbol{K}) \cdot \widetilde{oldsymbol{y}}$

Drawing samples from a Gaussian processes

For each sample do:

- Choose discretization of x axes $X = \{x_0, x_1, \dots, x_N\}$.
- Evaluate covariance $\boldsymbol{K} = \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}}(\boldsymbol{\varTheta}_{\mathsf{K}})$

Math

Draw from

 $p(\boldsymbol{y} \,|\, \boldsymbol{K}) = \mathcal{N}\left(\, \boldsymbol{y} \,\mid\, \boldsymbol{0}, \boldsymbol{K}\,\right)$

"Matlab"

 Draw independent Gaussian variables

$$\tilde{\boldsymbol{y}} = \mathsf{randn}(N, 1)$$

• Rotate with \sqrt{K}

$$\boldsymbol{y} = \mathsf{chol}(\boldsymbol{K}) \cdot \tilde{\boldsymbol{y}}$$

- Consistency of the 10D and 500D Gaussian.
- A small quiz:
 - Let y_1, y_2, y_3 have covariance matrix

$$\boldsymbol{K}_3 = \left[\begin{array}{cccc} 1 & 0.5 & 0 \\ 0.5 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{array} \right] \text{ and inverse } \boldsymbol{K}_3^{-1} = \left[\begin{array}{cccc} 1.5 & -1 & 0.5 \\ -1 & 2 & -1 \\ 0.5 & -1 & 1.5 \end{array} \right]$$

i.e.
$$p(\{y_1, y_2, y_3\} | \mathbf{K}_3) = \mathcal{N}(\{y_1, y_2, y_3\} | \mathbf{0}, \mathbf{K}_3)$$

Now focus on the variables y_1, y_2 , integrating out y_3

$$p(\{y_1, y_2\}) = \int_{y_3} \mathcal{N}(\{y_1, y_2, y_3\} \mid \mathbf{0}, \mathbf{K}_3)$$
$$= \mathcal{N}(\{y_1, y_2\} \mid \mathbf{0}, \mathbf{K}_2)$$

Which of the following statements is true

a)
$$K_2 = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$
 b) $K_2^{-1} = \begin{bmatrix} 1.5 & -1 \\ -1 & 2 \end{bmatrix}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Consistency of the 10D and 500D Gaussian.
- A small quiz:
 - Let y_1, y_2, y_3 have covariance matrix

$$\boldsymbol{K}_3 = \left[\begin{array}{cccc} 1 & 0.5 & 0 \\ 0.5 & 1 & 0.5 \\ 0 & 0.5 & 1 \end{array} \right] \text{ and inverse } \boldsymbol{K}_3^{-1} = \left[\begin{array}{ccccc} 1.5 & -1 & 0.5 \\ -1 & 2 & -1 \\ 0.5 & -1 & 1.5 \end{array} \right]$$

i.e. $p(\{y_1, y_2, y_3\} | \mathbf{K}_3) = \mathcal{N}(\{y_1, y_2, y_3\} | \mathbf{0}, \mathbf{K}_3)$

▶ Now focus on the variables y_1, y_2 , integrating out y_3 .

$$p(\{y_1, y_2\}) = \int_{y_3} \mathcal{N}(\{y_1, y_2, y_3\} \mid \mathbf{0}, \mathbf{K}_3)$$
$$= \mathcal{N}(\{y_1, y_2\} \mid \mathbf{0}, \mathbf{K}_2)$$

Which of the following statements is true

a)
$$K_2 = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$
 b) $K_2^{-1} = \begin{bmatrix} 1.5 & -1 \\ -1 & 2 \end{bmatrix}$

GP as infinite object (philosophical)

- ► A valid covariance function k(x, x') defines recipe to calculate covariance for any choice of inputs.
- Prior on functions: all points on the real line are inputs; K_{R,R} is an infinite object!
- Numerical implementation: choose finite subset X and evaluate on a reduced, finite K_{X,X}, exploiting consistency rule.

GP as infinite object (philosophical)

- ► A valid covariance function k(x, x') defines recipe to calculate covariance for any choice of inputs.
- ► Prior on functions: all points on the real line are inputs; K_{R,R} is an infinite object!
- ▶ Numerical implementation: choose finite subset *X* and evaluate on a reduced, finite *K*_{*X*,*X*}, exploiting consistency rule.

GP as infinite object (philosophical)

- ► A valid covariance function k(x, x') defines recipe to calculate covariance for any choice of inputs.
- Prior on functions: all points on the real line are inputs; K_{R,R} is an infinite object!
- Numerical implementation: choose finite subset X and evaluate on a reduced, finite K_{X,X}, exploiting consistency rule.

Outline

Motivation

Intuitive approach

Function space view

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

Function space view

So far

- 1. Joint Gaussian distribution over the set of all outputs y.
- 2. Covariance function as a recipe to construct a suitable covariance matrices from the corresponding inputs X.

Function space view

The Gaussian process as a prior on functions

- Covariance function and hyperparameters reflect the prior belief on function smoothness, lengthscales etc.
- The general recipe allows a joint Gaussian to be constructed for an arbitrary selection of input locations X.

Prior on infinite function f(x)

 $p(f(x)) = \mathsf{GP}(f(x) \,|\, k)$

Prior on function values $f = (f_1, \dots, f_N)$

 $p(\boldsymbol{f} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}) = \mathcal{N}\left(\left. \boldsymbol{f} \mid \boldsymbol{0}, \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} \right| \boldsymbol{\Theta}_{\mathsf{K}}
ight)$

Noise-free observations

- Given noise-free training data $\mathcal{D} = \{ \boldsymbol{x}_n, f_n \}_{n=1}^N$
- \blacktriangleright Want to make predictions f^{\star} at test points X^{\star}
- \blacktriangleright Joint distribution of f and f^{\star} is

$$p([\boldsymbol{f}, \boldsymbol{f}^{\star}] \,|\, \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{\Theta}_{\mathsf{K}}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{f}, \boldsymbol{f}^{\star} \end{bmatrix} \,|\, \boldsymbol{0}, \left[\begin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}} \\ \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}^{\star}} \end{array} \right] \right)$$

(All kernel matrices K depend on hyperparameters Θ_{K} which are dropped for brevity.)

Real data is rarely noise-free.

Noise-free observations

- Given noise-free training data $\mathcal{D} = \{ \boldsymbol{x}_n, f_n \}_{n=1}^N$
- \blacktriangleright Want to make predictions f^{\star} at test points X^{\star}
- Joint distribution of f and f^{\star} is

$$p([\boldsymbol{f}, \boldsymbol{f}^{\star}] \,|\, \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{\Theta}_{\mathsf{K}}) = \mathcal{N}\left(\begin{bmatrix} \boldsymbol{f}, \boldsymbol{f}^{\star} \end{bmatrix} \,|\, \boldsymbol{0}, \left[\begin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}} \\ \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}^{\star}} \end{array} \right] \right)$$

(All kernel matrices K depend on hyperparameters Θ_{K} which are dropped for brevity.)

Real data is rarely noise-free.

▶ Given observed noisy data D = {X, y}, the joint probability over latent function values f and f^{*} given y is

▶ Given observed noisy data $D = \{X, y\}$, the joint probability over latent function values f and f^* given y is

$$p([\boldsymbol{f}, \boldsymbol{f}^{\star}] | \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{y}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) \propto \mathcal{N}\left([\boldsymbol{f}, \boldsymbol{f}^{\star}] \mid \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}} \\ \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}^{\star}} \end{bmatrix}\right) \times \underbrace{\prod_{n=1}^{N} \mathcal{N}\left(y_{n} \mid f_{n}, \sigma^{2}\right)}_{\mathsf{Likelihood}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 \blacktriangleright Applying "Gaussian calculus", integrating out f yields

$$p([\boldsymbol{y},\boldsymbol{f}^{\star}] \mid \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{y}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) \propto \mathcal{N}\left(\begin{bmatrix}\boldsymbol{y},\boldsymbol{f}^{\star}\end{bmatrix} \mid \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}} + \sigma^{2}\boldsymbol{I} & \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}^{\star}} \\ \boldsymbol{K}_{\boldsymbol{X}^{\star},\boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}^{\star},\boldsymbol{X}^{\star}} \end{bmatrix}\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note: Assuming noisy instead of perfect observation noise merely corresponds to adding a diagonal component to the self-covariance K_{X,X}.

 \blacktriangleright Applying "Gaussian calculus", integrating out f yields

$$p([m{y},m{f}^{\star}] \mid m{X},m{X}^{\star},m{y},m{\Theta}_{\mathsf{K}},\sigma^2) \propto \mathcal{N}\left(egin{array}{ccc} m{y},m{f}^{\star}\end{bmatrix} \mid m{0}, \left[egin{array}{ccc} m{K}_{m{X},m{X}}+\sigma^2m{I} & m{K}_{m{X},m{X}^{\star}}\ m{K}_{m{X}^{\star},m{X}} & m{K}_{m{X}^{\star},m{X}^{\star}} \end{array}
ight]$$

 Note: Assuming noisy instead of perfect observation noise merely corresponds to adding a diagonal component to the self-covariance K_{X,X}.

Making predictions

 The predictive distribution follows from the joint distribution by completing the square (conditioning)

$$p([\boldsymbol{y},\boldsymbol{f}^{\star}] \mid \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{y}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) \propto \mathcal{N}\left([\boldsymbol{y},\boldsymbol{f}^{\star}] \mid \boldsymbol{0}, \begin{bmatrix} \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}} + \sigma^{2}\boldsymbol{I} & \boldsymbol{K}_{\boldsymbol{X},\boldsymbol{X}^{\star}} \\ \boldsymbol{K}_{\boldsymbol{X}^{\star},\boldsymbol{X}} & \boldsymbol{K}_{\boldsymbol{X}^{\star},\boldsymbol{X}^{\star}} \end{bmatrix}\right)$$

• Gaussian predictive distribution for f^* $p(f^* | X, y, X^*, \Theta_K, \sigma^2) = \mathcal{N} (f^* | \mu^*, \Sigma^*)$ with $\mu^* = K_{X^*, X} [K_{X, X} + \sigma^2 I]^{-1} y$ $\Sigma^* = K_{X^*, X^*} - K_{X^*, X} [K_{X, X} + \sigma^2 I]^{-1} K_{X, X^*}$

Making predictions

 The predictive distribution follows from the joint distribution by completing the square (conditioning)

$$p([\boldsymbol{y}, \boldsymbol{f}^{\star}] \mid \boldsymbol{X}, \boldsymbol{X}^{\star}, \boldsymbol{y}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) \propto \mathcal{N}\left(\begin{bmatrix} \boldsymbol{y}, \boldsymbol{f}^{\star} \end{bmatrix} \mid \boldsymbol{0}, \begin{bmatrix} egin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} + \sigma^{2} \boldsymbol{I} & egin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}} & egin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}} & egin{array}{cc} \boldsymbol{K}_{\boldsymbol{X} \star, \boldsymbol{X}} & egin{array}{cc} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{K}} & egin{array}{cc} \boldsymbol{K} & egin{array}{cc} \boldsymbol{K} & egin{array} & egin{a$$

• Gaussian predictive distribution for f^{\star}

$$p(f^{\star} | \boldsymbol{X}, \boldsymbol{y}, \boldsymbol{X}^{\star}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) = \mathcal{N} (f^{\star} | \boldsymbol{\mu}^{\star}, \boldsymbol{\Sigma}^{\star})$$
 with
 $\boldsymbol{\mu}^{\star} = \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}} [\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} + \sigma^{2} \boldsymbol{I}]^{-1} \boldsymbol{y}$
 $\boldsymbol{\Sigma}^{\star} = \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}^{\star}} - \boldsymbol{K}_{\boldsymbol{X}^{\star}, \boldsymbol{X}} [\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} + \sigma^{2} \boldsymbol{I}]^{-1} \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}^{\star}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Making predictions Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Making predictions Example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

- 1. Fixed covariance matrix: $p(\boldsymbol{y} \,|\, \boldsymbol{K})$
- 2. Constructed covariance matrix: $\{K\}_{i,j} = k(x_i, x_j; \boldsymbol{\Theta}_{\mathsf{K}})$

3. Can we learn the hyperparameters Θ_{K} ?

Formally we are interested in the posterior

 $p(\boldsymbol{\Theta}_{\mathsf{K}} \,|\, \mathcal{D}) \propto p\left(\boldsymbol{y} \,|\, \boldsymbol{X}, \, \boldsymbol{\Theta}_{\mathsf{K}}\right) p(\boldsymbol{\Theta}_{\mathsf{K}})$

- Inference is analytically intractable!
- MAP estimate instead of a full posterior. Set \(\mathcal{O}_K\) to the most probable hyperparameter settings:

$$\begin{split} \hat{\boldsymbol{\vartheta}}_{\mathsf{K}} &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \left[p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}} \right) p(\boldsymbol{\Theta}_{\mathsf{K}}) \right] \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I} \right) + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \left[-\frac{1}{2} \log \det[\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I}] \\ &- \frac{1}{2} \boldsymbol{y}^{\top} [\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I}]^{-1} \boldsymbol{y} - \frac{N}{2} \log 2\pi + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \right] \end{split}$$

 Optimization can be carried out using standard optimization techniques.

Formally we are interested in the posterior

$$p(\boldsymbol{\Theta}_{\mathsf{K}} | \mathcal{D}) \propto p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}) p(\boldsymbol{\Theta}_{\mathsf{K}})$$

- Inference is analytically intractable!
- MAP estimate instead of a full posterior. Set Θ_K to the most probable hyperparameter settings:

$$\begin{split} \hat{\boldsymbol{\Theta}}_{\mathsf{K}} &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \left[p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}} \right) p(\boldsymbol{\Theta}_{\mathsf{K}}) \right] \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I} \right) + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \left[-\frac{1}{2} \log \det[\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I}] \\ &- \frac{1}{2} \boldsymbol{y}^{\top} [\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}) + \sigma^{2} \boldsymbol{I}]^{-1} \boldsymbol{y} - \frac{N}{2} \log 2\pi + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \right] \end{split}$$

 Optimization can be carried out using standard optimization techniques.

Formally we are interested in the posterior

$$p(\boldsymbol{\Theta}_{\mathsf{K}} | \mathcal{D}) \propto p(\boldsymbol{y} | \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}) p(\boldsymbol{\Theta}_{\mathsf{K}})$$

- Inference is analytically intractable!
- MAP estimate instead of a full posterior. Set Θ_K to the most probable hyperparameter settings:

$$\begin{split} \hat{\boldsymbol{\Theta}}_{\mathsf{K}} &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \left[p\left(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}} \right) p\left(\boldsymbol{\Theta}_{\mathsf{K}} \right) \right] \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \ln \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} \left(\boldsymbol{\Theta}_{\mathsf{K}} \right) + \sigma^{2} \boldsymbol{I} \right) + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \\ &= \operatorname*{argmax}_{\boldsymbol{\Theta}_{\mathsf{K}}} \left[-\frac{1}{2} \log \det[\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} \left(\boldsymbol{\Theta}_{\mathsf{K}} \right) + \sigma^{2} \boldsymbol{I} \right] \\ &- \frac{1}{2} \boldsymbol{y}^{\top} [\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}} \left(\boldsymbol{\Theta}_{\mathsf{K}} \right) + \sigma^{2} \boldsymbol{I}]^{-1} \boldsymbol{y} - \frac{N}{2} \log 2\pi + \ln p(\boldsymbol{\Theta}_{\mathsf{K}}) \right] \end{split}$$

 Optimization can be carried out using standard optimization techniques.

- ► The covariance function embodies the prior belief about functions.
- Example: linear regression

$$y_n = wx_n + c + \psi_n$$

Covariance function denote covariation

$$k(x_n, x'_n) = \langle y_n y'_n \rangle$$

= $\langle (wx_n + c + \psi_n)(wx'_n + c + \psi'_n) \rangle$
= $\underbrace{w^2 \cdot x_n x'_n + c^2}_{\text{kernel: } k(x_n, x'_n)} + \delta_{n,n'} \psi_n^2$

Multidimensional input space

- Generalise squared exponential covariance function to multiple dimensions
 - ► 1 Dimension $k_{\text{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i x_j)^2}{I^2}\right\}$
 - ► D Dimensions dD $k_{\mathsf{SE}}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \sum_{d=1}^{D} \frac{(x_i^d - x_j^d)^2}{L_d^2}\right\}$
- Lengthscale parameters L_d denote "relevance" of a particular data dimension.

• Large L_d correspond to irrelevant dimensions.

Multidimensional input space

 Generalise squared exponential covariance function to multiple dimensions

• 1 Dimension
$$k_{SE}(x_i, x_j; A, L) = A^2 \exp\left\{-0.5 \cdot \frac{(x_i - x_j)^2}{L^2}\right\}$$

- D Dimensions dD $k_{\mathsf{SE}}(\boldsymbol{x}_i, \boldsymbol{x}_j; A, \boldsymbol{L}) = \boldsymbol{A}^2 \exp\left\{-0.5 \sum_{d=1}^{D} \frac{(x_i^d x_j^d)^2}{\boldsymbol{L}_d^2}\right\}$
- Lengthscale parameters L_d denote "relevance" of a particular data dimension.

• Large L_d correspond to irrelevant dimensions.

2D regression

2D regression

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Any kernel will do

Established kernels are all valid covariance functions, allowing for a wide range of possible input domains X:

- Graph kernels (molecules)
- Kernels defined on strings (DNA sequences)

Combining existing covariance functions

The sum of two covariances functions is itself a valid covariance function

$$k_S(x, x') = k_1(x, x') + k_2(x, x')$$

The product of two covariance functions is itself a valid covariance function

$$k_P(x, x') = k_1(x, x') \cdot k_2(x, x')$$

Variance component

Linear model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) \\ = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \cdot \boldsymbol{\theta}, \sigma^2 \boldsymbol{I} \right)$$

• Marginalize over θ

 $p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_g^2, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_g^2 \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}}}_{K} + \sigma^2 \boldsymbol{I})$

Gaussian process

- ▶ Define covariance through "recipe" K_{X,X}(Θ_K)
- Implies marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}})}_{\boldsymbol{K}} + \sigma^{2}\boldsymbol{I})$$

• Any feature map Φ implies a valid covariance function $K_{X,X}(\Theta_{\mathsf{K}})$.

The inverse is not necessarily true!

Variance component

Linear model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) \\ = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \cdot \boldsymbol{\theta}, \sigma^2 \boldsymbol{I} \right)$$

• Marginalize over θ

$$p(\boldsymbol{y} | \boldsymbol{X}, \sigma_g^2, \sigma^2) = \mathcal{N}(\boldsymbol{y} | \boldsymbol{0}, \underbrace{\sigma_g^2 \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}}}_{\boldsymbol{K}} + \sigma^2 \boldsymbol{I})$$

Gaussian process

- ► Define covariance through "recipe" $K_{X,X}(\Theta_{\mathsf{K}})$
- Implies marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}})}_{\boldsymbol{K}} + \sigma^{2}\boldsymbol{I})$$

Any feature map Φ implies a valid covariance function $K_{X,X}(\Theta_{\mathsf{K}})$.

The inverse is not necessarily true!

Variance component

Linear model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) \\ = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \cdot \boldsymbol{\theta}, \sigma^2 \boldsymbol{I} \right)$$

• Marginalize over θ

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_g^2, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_g^2 \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}}}_{\boldsymbol{K}} + \sigma^2 \boldsymbol{I})$$

Gaussian process

- ▶ Define covariance through "recipe" K_{X,X}(Θ_K)
- Implies marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}})}_{\boldsymbol{K}} + \sigma^2 \boldsymbol{I})$$

• Any feature map $\boldsymbol{\Phi}$ implies a valid covariance function $K_{\boldsymbol{X},\boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}}).$

The inverse is not necessarily true

Variance component

Linear model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\theta}, \sigma^2) \\ = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X}) \cdot \boldsymbol{\theta}, \sigma^2 \boldsymbol{I} \right)$$

• Marginalize over θ

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_g^2, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\sigma_g^2 \boldsymbol{\Phi}(\boldsymbol{X}) \boldsymbol{\Phi}(\boldsymbol{X})^{\mathsf{T}}}_{\boldsymbol{K}} + \sigma^2 \boldsymbol{I})$$

Gaussian process

- ▶ Define covariance through "recipe" K_{X,X}(Θ_K)
- Implies marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\Theta}_{\mathsf{K}}, \sigma^{2}) = \mathcal{N}(\boldsymbol{y} \mid \boldsymbol{0}, \underbrace{\boldsymbol{K}_{\boldsymbol{X}, \boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}})}_{\boldsymbol{K}} + \sigma^{2}\boldsymbol{I})$$

- Any feature map $\boldsymbol{\Phi}$ implies a valid covariance function $K_{\boldsymbol{X},\boldsymbol{X}}(\boldsymbol{\Theta}_{\mathsf{K}})$.
- The inverse is not necessarily true!