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Genome-wide association studies (GWAS)

Given:

I Genotype for multiple individuals

I Genome-wide single nucleotide
polymorphism (SNP) markers

I Phenotypes for the same
individuals

I common diseases (qualitative)
I height, BMI, . . . (quantitative)

study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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I Confounding structure leads
to false positives.

I Population structure
I Family structure
I Cryptic relatedness
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Genomic control [Devlin and Roeder, Biometrics 1999]

I Genomic control λ

λ =
median(2LR)

median(χ2)
.

I λ = 1: Calibrated p-values
I λ > 1: Inflation
I λ < 1: Deflation

I Correct by dividing test
statistic by λ.

I Applicable in combination
with every method.

I Does not change
(non-)uniformity of p-values.

I Very conservative.
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Linear mixed models (LMM)

I Kernel matrix K
I Estimated from SNP data
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I Covariance
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Linear mixed models (LMM)

I Corrects for all levels of
population structure.

I ML estimation is
computationally demanding

I Non-convex in σ2
g and σ2.
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Linear mixed models (LMM)
EMMA [Kang et al., Genetics 2008]

I LMM log likelihood

LL(β, σ2g, σ
2) = logN

(
y | Xβ , σ2gK + σ2I

)
.

I Change of variables, introducing δ = σ2/σ2g:

LL(β, σ2g, δ) = logN
(
y | Xβ , σ2g (K + δI)

)
.

I ML-parameters β and σ2g follow in closed form.

I Use optimizer to solve 1-dimensional optimization problem over δ.

I O(N3) per SNP.
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Linear mixed models (LMM)
ML parameters

Gradient of the LMM log likelihood w.r.t. β

∇β logN
(
y | Xβ , σ2

g (K + δI)
)

= ∇β −
1

2σ2
g
(y −Xβ)> (K + δI)−1 (y −Xβ)

=
1

σ2
g

[
−X> (K + δI)−1 y +X> (K + δI)−1X

]
set gradient to zero:

0 =
1

σ2
g

[
X> (K + δI)−1 y −X> (K + δI)−1Xβ

]
X> (K + δI)−1Xβ = X> (K + δI)−1 y

βML =
(
X> (K + δI)−1X

)−1

X> (K + δI)−1 y

Note that this solution is analogous to the ML solution of the linear regression(
X>X

)−1

X>y.
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Linear mixed models (LMM)
ML parameters

Derivative of the LMM log likelihood w.r.t. σ2
g

dσ2
g logN

(
y | Xβ , σ2

g (K + δI)
)

= −1

2

[
N

σ2
g

− N

σ4
g

(y −Xβ)> (K + δI)
−1

(y −Xβ)
]

set derivative to zero:

0 = −1

2

[
N

σ2
g

− N

σ4
g

(y −Xβ)> (K + δI)
−1

(y −Xβ)
]

σ2
gML =

1

N
(y −Xβ)> (K + δI)

−1
(y −Xβ)

I Note that For every SNP we need to calculate (K + δI)−1, which is an O(N3)
operation.
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FaST LMM
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Linear mixed models
Linear regression view

I For linear similarities, a LMM is equivalent to a linear regression.

I All SNPs are used as regression covariates.

I Uncertainty about identity of true causal variants expressed by
considering a distribution over the effect sizes.
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GWAS of complex traits

I Association by linkage to
causal variant

I SNPs confounded by
population structure
creates correlation between
physically unlinked markers

I Spurious associations if not
taken into account

I Alternatively condition on
causal/confounded markers
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A LMM accounts for model misspecification when testing a univariate model
when in reality the trait is multi-factorial.

Can we do better than using all SNPs for correction?
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populations plus causal variants

I Experiments:
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I removal of differentiated SNPs
I addition of irrelevant SNPs

I Evaluation measures:

I AUC for detecting causal
SNPs

I Genomic Control λ on
non-causal SNPs

I FaST-LMM-Select optimizing
phenotype prediction generally
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Proximal contamination

I Having a SNP in the similarity matrix that is linked to the SNP tested leads
to loss in power.

I Correct by removing a sliding window around test-SNP from the similarity
matrix.

I Correction is computed efficiently by subtracting a low-rank term.
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Inflammatory bowel disease [WTCCC, Nature 2007]

Algorithm*parameters* Algorithm*performance*

Name% SNP$
selection$
method$

#SNPs$
in$
matrix$

Avoid$
prox$
conta
m$

λGC% False%
Positives%

True%
Positives%

Runtime%(min)%
without%
speedup%

Runtime%(min)%
with%speedup%

Memory%
use%(GB)%

FaST?LMM?Select% Select% 310% yes% 1.08% 0% 100% 1.3%x%103% 45% <1%
FaST?LMM%all% All% All% yes% 1.09% 2% 108% 4.0%x%106% 4567% 86%

FaST?LMM%orig%310% Equi?spaced% 310% yes% 1.26% 15% 128% 1.1%x%103% 6% <1%
FaST?LMM%orig%4K% Equi?spaced% 4000% yes% 1.17% 8% 114% 2.1%x%105% 30% 2%

Traditional% All% All% no% 0.97% 2% 64% 42% NA% 45%

%
SNPs considered True Positive if:

I Reported in WTCCC paper [WTCCC, Nature 2007]

I Reported in meta analysis [Franke et al., Nat Gen 2010]

I In major histocompatibility complex (MHC) region



Marginal likelihood of variance component models

I Consider a linear model, accounting for a set of measured SNPs X

p(y |X,β, σ2) = N
(
y |

S∑
s=1

xsβs, σ
2I

)
I Choose identical Gaussian prior for all weights

p(β) =

S∏
s=1

N
(
βs | 0, σ2g

)
I Marginal likelihood

p(y |X, ) =

∫
β
N
(
y | Xβ, σ2I

)
N
(
β | 0, σ2gI

)

I Number of hyperparameters independent of number of SNPs
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Marginal likelihood of variance component models
Basis functions

I The analogous derivation can be repeated for a feature mapping φ

p(y |X,β, σ2) = N
(
y |

S∑
s=1

φ(xs)βs, σ
2I

)
=

N
(
y | Φ(X)β, σ2I

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
β
N
(
y | Φ(X)β, σ2I

)
N
(
β | 0, σ2gI

)
= N

y | 0, σ2g Φ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I


I K: (N x N) kernel or covariance induced by feature mapping φ.



Marginal likelihood of variance component models
Basis functions

I The analogous derivation can be repeated for a feature mapping φ

p(y |X,β, σ2) = N
(
y |

S∑
s=1

φ(xs)βs, σ
2I

)
=

N
(
y | Φ(X)β, σ2I

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
β
N
(
y | Φ(X)β, σ2I

)
N
(
β | 0, σ2gI

)
= N

y | 0, σ2g Φ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I


I K: (N x N) kernel or covariance induced by feature mapping φ.



Marginal likelihood of variance component models
Basis functions

I The analogous derivation can be repeated for a feature mapping φ

p(y |X,β, σ2) = N
(
y |

S∑
s=1

φ(xs)βs, σ
2I

)
=

N
(
y | Φ(X)β, σ2I

)
I Marginal likelihood

p(y |X, σ2, σ2g) =

∫
β
N
(
y | Φ(X)β, σ2I

)
N
(
β | 0, σ2gI

)
= N

y | 0, σ2g Φ(X)Φ(X)>︸ ︷︷ ︸
K

+σ2I


I K: (N x N) kernel or covariance induced by feature mapping φ.



Marginal likelihood of variance component models
Application to GWAS

The missing heritability paradox
I Complex traits are regulated by a large number of small effects

I Human height: the best single SNP explains little variance.
I But: height of the parents are highly predictive for the height of the

child!



Marginal likelihood of variance component models
Application to GWAS
Linear additive models for complex traits

I Multiple linear regression model over causal SNPs

p(y |X,β, σ2) = N
(
y |

∑
s∈causal

xsβs , σ
2I
)

I Which SNPs are causal ?
Approximation: consider all S available common SNPs [Yang et al. 2011]

p(y |X,β, σ2) = N
(
y |

S∑
s=1

xsβs , σ
2I
)

I Causal SNPs either in the model or “tagged” by linkage disequilibrium to nearby
common SNPs

I Uncertainty over causal SNPs: Prior on all SNP effects p(βs) = N
(
βs | 0, σ2

g/S
)

I Marginalize out weights

p(y |X, σ2
g , σ

2) = N
(
y |0 , σ2

g

S∑
s=1

1

S
xsx

>
s + σ2I

)
I Perform maximum marginal likelihood estimation on σ2

g and σ2.
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Marginal likelihood of variance component models

I Consider a linear model, accounting for a set of measured SNPs X

p(y |X,β, σ2) = N
(
y |

S∑
s=1

xsβs, σ
2I

)
I Choose identical Gaussian prior for all weights

p(β) =

S∏
s=1

N
(
βs | 0, σ2g

)
I Marginal likelihood

p(y |X, ) =

∫
β
N
(
y | Xβ, σ2I

)
N
(
β | 0, σ2gI

)

I Number of hyperparameters independent of number of SNPs
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Marginal likelihood of variance component models
Basis functions

I The analogous derivation can be repeated for a feature mapping φ
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I K: (N x N) kernel or covariance induced by feature mapping φ.
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Marginal likelihood of variance component models
Application to GWAS

The missing heritability paradox
I Complex traits are regulated by a large number of small effects

I Human height: the best single SNP explains little variance.
I But: height of the parents are highly predictive for the height of the

child!
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FaST-LMM-Set

I Aggregate effects within a gene or pathway

I Variance component test (e.g. [Wu et al 2011])

I Correct for population structure

I Perform a Likelihood ratio test
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Variance component testing
Likelihood-Ratio test vs. Score test

I For convenience most variance component tests use Score tests (e.g. [Wu et al.
2011])

I For the likelihood ratio test (LRT) no exact null distribution is known
(Permutations are prohibitive!)

I Small number of permutations

I a parametric fit to get an accurate and efficient estimate of the null distribution of
the LRT.

I Empirically, the LRT outperforms the score test in terms of power
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Likelihood-Ratio test vs. Score test

I For convenience most variance component tests use Score tests (e.g. [Wu et al.
2011])

I For the likelihood ratio test (LRT) no exact null distribution is known
(Permutations are prohibitive!)
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I a parametric fit to get an accurate and efficient estimate of the null distribution of
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Type 1 error:
Significance Level α = 10−5 α = 10−4 α = 10−3

Fast-LMM-Set 1× 10−5 1.21× 10−4 1.01× 10−3

0.5χ2
0 + 0.5χ2

1 5× 10−6? 4× 10−5? 4.55× 10−4?
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