Machine Learning and Statistics in Genetics and Genomics V: Linear mixed models for Genetics

Christoph Lippert

Microsoft Research eScience group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Los Angeles , USA

Current topics in computational biology UCLA Winter quarter 2014 **GWAS** Introduction

Population Structure Population structure

Population structure correction

Genomic control Linear mixed models (LMM) FaST linear mixed models Dilution Proximal contamination

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FaST-LMM-Set

Outline

Outline

GWAS Introduction

Population Structure Population structure

Population structure correction Genomic control Linear mixed models (LMM) FaST linear mixed models Dilution Proximal contamination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FaST-LMM-Set

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - > common diseases (qualitative)
 - height, BMI, (quantitative)

・ロト ・ 一 ト ・ モト ・ モト

э

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - 🖻 height, BMI, (quantitative)

イロト 不得 トイヨト イヨト

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

イロト 不得 トイヨト イヨト

э

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Televisioniani, stating bland Life, Bu

equilibrium and an

David/102013x Record, Nr. 40 right server

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Goal:

Identify causal loci that explain phenotypic differences.

Use linked markers

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Goal:

- Identify causal loci that explain phenotypic differences.
- Use linked markers

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Goal:

- Identify causal loci that explain phenotypic differences.
- Use linked markers

Given:

- Genotype for multiple individuals
 - Genome-wide single nucleotide polymorphism (SNP) markers
- Phenotypes for the same individuals
 - common diseases (qualitative)
 - height, BMI, ... (quantitative)

Goal:

- Identify causal loci that explain phenotypic differences.
- Use linked markers

Population structure

Population-based sampling of humans, plants or animals.

- False positives due to population structure
- Take varying degrees of relatedness into account.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Population structure

Population-based sampling of humans, plants or animals.

- False positives due to population structure
- Take varying degrees of relatedness into account.

Population structure

Population-based sampling of humans, plants or animals.

- False positives due to population structure
- Take varying degrees of relatedness into account.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Population structure

Population-based sampling of humans, plants or animals.

- False positives due to population structure
- Take varying degrees of relatedness into account.

Population structure

Population-based sampling of humans, plants or animals.

- False positives due to population structure
- Take varying degrees of relatedness into account.

Study power

- Studies of tens of thousands of samples require efficient algorithms
- High polygenicity of quantitative traits and common diseases
 - better modeling of complex traits
 - Aggregating weak effects and effects of rare variants

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Study power

- Studies of tens of thousands of samples require efficient algorithms
- High polygenicity of quantitative traits and common diseases

Study power

- Studies of tens of thousands of samples require efficient algorithms
- High polygenicity of quantitative traits and common diseases
 - better modeling of complex traits

Study power

- Studies of tens of thousands of samples require efficient algorithms
- High polygenicity of quantitative traits and common diseases
 - better modeling of complex traits
 - Aggregating weak effects and effects of rare variants

Outline

GWAS Introduction

Population Structure

Population structure

Population structure correction Genomic control Linear mixed models (LMM) FaST linear mixed models Dilution Proximal contamination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

FaST-LMM-Set

- Identify associations between variable genetic loci and phenotypes.
 - Linear and logistic regression
 - Statistical dependence tests
 - (F-test, likelihood ratio)

- Identify associations between variable genetic loci and phenotypes.
 - Linear and logistic regression
 - Statistical dependence tests
 - (F-test, likelihood ratio)

イロト 不得 トイヨト イヨト

$$\frac{\mathcal{N}\left(\left. \boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta},\,\sigma^{2}\boldsymbol{I} \right. \right)}{\mathcal{N}\left(\left. \boldsymbol{y} \mid \boldsymbol{0},\,\sigma^{2}\boldsymbol{I} \right. \right)}$$

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

GWA on inflammatory bowel disease (WTCCC)

▶ 3.4k cases, 11.9k controls

Methods

- Linear regression
- Likelihood ratio test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GWA on inflammatory bowel disease (WTCCC)

- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

GWA on inflammatory bowel disease (WTCCC)

- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

Outline

GWAS Introduction

Population Structure Population structure

Population structure correction Genomic control Linear mixed models (LMM) FaST linear mixed models Dilution Proximal contamination

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FaST-LMM-Set

Genomic control [Devlin and Roeder, Biometrics 1999]

▶ Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *p*-values
- $\lambda > 1$: Inflation
- $\lambda < 1$: Deflation
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.
- Very conservative.

・ロト・西ト・西ト・日・ 日・ シック

Genomic control [Devlin and Roeder, Biometrics 1999]

 \blacktriangleright Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *p*-values
- $\lambda > 1$: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.
- Very conservative.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで
\blacktriangleright Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *p*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.
- Very conservative.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

 \blacktriangleright Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *p*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.
- Very conservative.

 \blacktriangleright Genomic control λ

 $\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$

- $\lambda = 1$: Calibrated *p*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.

Very conservative.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 \blacktriangleright Genomic control λ

 $\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$

- $\lambda = 1$: Calibrated *p*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *p*-values.
- Very conservative.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect $oldsymbol{u}.$
- Sample phenotype y.

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect u.
- Sample phenotype y.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect u.
- Sample phenotype y.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect *u*.

Sample phenotype **y**.

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect *u*.
- Sample phenotype y.

▲□▼▲□▼▲□▼▲□▼ □ ● ●

Kernel matrix K

- Estimated from SNP data
- Identity by state
- Identity by descent
- Covariance
- Sample random effect *u*.
- Sample phenotype y.

$$\int_{\boldsymbol{u}} \mathcal{N}\left(\,\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{u} \,,\, \sigma^{2}\boldsymbol{I}\,\right) \mathcal{N}\left(\,\boldsymbol{u} \mid \boldsymbol{0} \,,\, \sigma_{\mathsf{g}}^{2}\boldsymbol{K}\,\right)$$

- Kernel matrix K
 - Estimated from SNP data
 - Identity by state
 - Identity by descent
 - Covariance
- Sample random effect *u*.
- Sample phenotype y.

SNPs

population structure

 $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$

- Corrects for all levels of population structure.
- ML estimation is computationally demanding

 $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Corrects for all levels of population structure.
- ML estimation is computationally demanding

F Non-convex III $\sigma_{\rm g}$ and $\sigma_{\rm g}$

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$$

Corrects for all levels of population structure.

 ML estimation is computationally demanding
 Non-convex in σ² and σ²

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$$

・ロト ・四ト ・ヨト ・ヨ

- Corrects for all levels of population structure.
- ML estimation is computationally demanding
 - Non-convex in σ_{σ}^2 and σ^2

ATGACTGAAACTGGGGACTGACGTGGAACGGT
ATGACTGAACTGGGGGATGACGTGCAACGGT
ATGACTGCAACTGGGGGATGACGTGCAACGGT
ATGACTGAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
$$\mathbf{X}$$

 $\boldsymbol{\beta}$
 $\boldsymbol{$

イロト イポト イヨト イヨト

/ population structure

э

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$$

- Corrects for all levels of population structure.
- ML estimation is computationally demanding
 - Non-convex in σ_{g}^{2} and σ^{2} .

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right)$$

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma^{2}) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \boldsymbol{K} + \sigma^{2} \boldsymbol{I} \right).$$

• Change of variables, introducing $\delta = \sigma^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \right).$$

- ML-parameters β and σ_g^2 follow in closed form.
- Use optimizer to solve 1-dimensional optimization problem over δ.
 O(N³) per SNP

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma^{2}) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \boldsymbol{K} + \sigma^{2} \boldsymbol{I} \right).$$

• Change of variables, introducing $\delta = \sigma^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{\mathbf{g}}^{2}, \delta) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{\mathbf{g}}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \right).$$

- ML-parameters β and σ²_g follow in closed form.
- ► Use optimizer to solve 1-dimensional optimization problem over δ.
 ► O(N³) per SNP.

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma^{2}) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \boldsymbol{K} + \sigma^{2} \boldsymbol{I} \right).$$

• Change of variables, introducing $\delta = \sigma^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{K} + \delta\boldsymbol{I}\right)\right).$$

- ML-parameters β and σ_{g}^{2} follow in closed form.
- ► Use optimizer to solve 1-dimensional optimization problem over δ.
 ► O(N³) per SNP.

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma^{2}) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \boldsymbol{K} + \sigma^{2} \boldsymbol{I} \right).$$

• Change of variables, introducing $\delta = \sigma^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{K} + \delta\boldsymbol{I}\right)\right).$$

(日) (同) (三) (三) (三) (○) (○)

- ML-parameters β and σ_g^2 follow in closed form.
- Use optimizer to solve 1-dimensional optimization problem over δ.
 O(N³) per SNP.

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma^{2}) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \boldsymbol{K} + \sigma^{2} \boldsymbol{I} \right).$$

• Change of variables, introducing $\delta = \sigma^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma_{g}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \right).$$

(日) (同) (三) (三) (三) (○) (○)

- ML-parameters β and σ_g^2 follow in closed form.
- Use optimizer to solve 1-dimensional optimization problem over δ.
 O(N³) per SNP.

ML parameters

Gradient of the LMM log likelihood w.r.t. $oldsymbol{eta}$

ML parameters

Gradient of the LMM log likelihood w.r.t. $m{eta}$

$$\begin{aligned} \nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\, \boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta} \,, \, \sigma_{\mathsf{g}}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \, \right) &= & \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{\mathsf{g}}^{2}} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right)^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right) \\ &= & \frac{1}{\sigma_{\mathsf{g}}^{2}} \left[- \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} + \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \right] \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

ML parameters

Gradient of the LMM log likelihood w.r.t. $m{eta}$

$$egin{aligned}
abla_{eta} \log \mathcal{N}\left(\left. oldsymbol{y} \mid oldsymbol{X}oldsymbol{eta}, \sigma_{\mathsf{g}}^2 \left(oldsymbol{K} + \delta oldsymbol{I}
ight)
ight) &= &
abla_{oldsymbol{eta}} - rac{1}{2\sigma_{\mathsf{g}}^2} \left(oldsymbol{y} - oldsymbol{X}oldsymbol{eta}
ight)^ op \left(oldsymbol{K} + \delta oldsymbol{I}
ight)^{-1} \left(oldsymbol{y} - oldsymbol{X}oldsymbol{eta}
ight) \\ &= & rac{1}{\sigma_{\mathsf{g}}^2} \left[-oldsymbol{X}^ op \left(oldsymbol{K} + \delta oldsymbol{I}
ight)^{-1} oldsymbol{y} + oldsymbol{X}^ op \left(oldsymbol{K} + \delta oldsymbol{I}
ight)^{-1} oldsymbol{X}
ight) \\ &= & rac{1}{\sigma_{\mathsf{g}}^2} \left[-oldsymbol{X}^ op \left(oldsymbol{K} + \delta oldsymbol{I}
ight)^{-1} oldsymbol{Y} + oldsymbol{X}^ op \left(oldsymbol{K} + \delta oldsymbol{I}
ight)^{-1} oldsymbol{X}
ight)
ight] \end{split}{}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

set gradient to zero:

ML parameters

Gradient of the LMM log likelihood w.r.t. $m{eta}$

$$\begin{aligned} \nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\, \boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta} \,, \, \sigma_{\mathsf{g}}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \, \right) &= & \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{\mathsf{g}}^{2}} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right)^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right) \\ &= & \frac{1}{\sigma_{\mathsf{g}}^{2}} \left[- \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} + \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \right] \end{aligned}$$

set gradient to zero:

$$\begin{aligned} \mathbf{0} &= \quad \frac{1}{\sigma_{\mathsf{g}}^2} \left[\boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} - \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \boldsymbol{\beta} \right] \\ \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \boldsymbol{\beta} &= \quad \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} \\ \boldsymbol{\beta}_{\mathsf{ML}} &= \quad \left(\boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} \end{aligned}$$

ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\begin{aligned} \nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\, \boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta} \,, \, \sigma_{\mathsf{g}}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right) \, \right) &= & \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{\mathsf{g}}^{2}} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right)^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \right) \\ &= & \frac{1}{\sigma_{\mathsf{g}}^{2}} \left[- \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} + \boldsymbol{X}^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \right] \end{aligned}$$

set gradient to zero:

$$\begin{aligned} \mathbf{0} &= \quad \frac{1}{\sigma_{\mathsf{g}}^2} \left[\boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} - \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \boldsymbol{\beta} \right] \\ \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \boldsymbol{\beta} &= \quad \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} \\ \boldsymbol{\beta}_{\mathsf{ML}} &= \quad \left(\boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^\top \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \boldsymbol{y} \end{aligned}$$

Note that this solution is analogous to the ML solution of the linear regression $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

Note that For every SNP we need to calculate (K + δI)⁻¹, which is an O(N³) operation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

$$\mathsf{d}\sigma_{\mathsf{g}}^{2}\log\mathcal{N}\left(\boldsymbol{y}\mid\boldsymbol{X}\boldsymbol{\beta}\,,\,\sigma_{\mathsf{g}}^{2}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)\right)\\ = -\frac{1}{2}\left[\frac{N}{\sigma_{\mathsf{g}}^{2}}-\frac{N}{\sigma_{g}^{4}}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^{\top}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right]$$

Note that For every SNP we need to calculate (K + δI)⁻¹, which is an O(N³) operation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

$$d\sigma_{g}^{2} \log \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2} \left(\boldsymbol{K} + \delta \boldsymbol{I}\right) \right) \\ = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \right)^{\top} \left(\boldsymbol{K} + \delta \boldsymbol{I} \right)^{-1} \left(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \right) \right]$$

set derivative to zero:

Note that For every SNP we need to calculate (K + δI)⁻¹, which is an O(N³) operation.

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

$$\mathsf{d}\sigma_{\mathsf{g}}^{2}\log\mathcal{N}\left(\boldsymbol{y}\mid\boldsymbol{X}\boldsymbol{\beta}\,,\,\sigma_{\mathsf{g}}^{2}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)\right)\\ = -\frac{1}{2}\left[\frac{N}{\sigma_{\mathsf{g}}^{2}}-\frac{N}{\sigma_{g}^{4}}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^{\top}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_g^2} - \frac{N}{\sigma_g^4} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{K} + \delta \boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \right]$$
$$\sigma_{g\mathsf{ML}}^2 = \frac{1}{N} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{K} + \delta \boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

Note that For every SNP we need to calculate (K + δI)⁻¹, which is an O(N³) operation.

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

$$\mathsf{d}\sigma_{\mathsf{g}}^{2}\log\mathcal{N}\left(\boldsymbol{y}\mid\boldsymbol{X}\boldsymbol{\beta}\,,\,\sigma_{\mathsf{g}}^{2}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)\right)\\ = -\frac{1}{2}\left[\frac{N}{\sigma_{\mathsf{g}}^{2}}-\frac{N}{\sigma_{g}^{4}}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)^{\top}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)^{-1}\left(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta}\right)\right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_g^2} - \frac{N}{\sigma_g^4} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{K} + \delta \boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \right]$$
$$\sigma_{g\mathsf{ML}}^2 = \frac{1}{N} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^\top (\boldsymbol{K} + \delta \boldsymbol{I})^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

Note that For every SNP we need to calculate (K + δI)⁻¹, which is an O(N³) operation.

 $\mathcal{N}(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}(\boldsymbol{K}+\delta\boldsymbol{I})).$

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)\right).$$

$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \, \sigma_{g}^{2}\left(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} + \delta\boldsymbol{I}\right)\right).$$

<□ > < @ > < E > < E > E のQ @

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{\mathsf{g}}^{2}\left(\boldsymbol{K}+\delta\boldsymbol{I}\right)\right).$$

$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \, \sigma_{g}^{2}\left(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} + \delta\boldsymbol{I}\right)\right).$$

$$= \mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \, \sigma_{g}^{2}\left(\boldsymbol{\Lambda} + \delta\boldsymbol{I}\right)\right).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathcal{N}\left(oldsymbol{y} \mid oldsymbol{X}oldsymbol{eta}, \sigma_{\mathsf{g}}^{2}(oldsymbol{K} + \delta oldsymbol{I})
ight).$$

= $\mathcal{N}\left(oldsymbol{y} \mid oldsymbol{X}oldsymbol{eta}, \sigma_{\mathsf{g}}^{2}\left(oldsymbol{U}oldsymbol{\Lambda}oldsymbol{U}^{ op} + \deltaoldsymbol{I}
ight)
ight).$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

0

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{K} + \delta\boldsymbol{I}\right)\right).$$

$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{U}\boldsymbol{\Lambda}\boldsymbol{U}^{\top} + \delta\boldsymbol{I}\right)\right).$$

$$= \mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma_{g}^{2}\left(\boldsymbol{\Lambda} + \delta\boldsymbol{I}\right)\right).$$

 $\begin{array}{c} | \\ \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{e}^{2}\mathbf{I}\right) & \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right) & \mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}(\mathbf{S}+\delta\mathbf{I})\right) \\ + \Box \succ \langle \boldsymbol{\Box} \rangle \neq \langle \boldsymbol{\Xi} \rangle \neq \langle \boldsymbol{\Xi} \rangle \neq \langle \boldsymbol{\Xi} \rangle \\ \langle \boldsymbol{\Xi} \rangle \neq \langle \boldsymbol{\Xi} \rangle = \langle \boldsymbol{\Xi} \varphi = \langle \boldsymbol{\Xi} \rangle = \langle \boldsymbol{\Xi} = \langle \boldsymbol{\Xi} \rangle = \langle$
$$\mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma_{\mathsf{g}}^{2}\left(\boldsymbol{\Lambda}+\delta\boldsymbol{I}\right)\right).$$

Factored Spectrally Transformed LMM

- ► O(N³) once for spectral decomposition.
- Exact LMM solution.
- Bottlenecks: $O(N^3)$ runtime, $O(N^2)$ memory for K.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$\mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma_{\mathsf{g}}^{2}\left(\boldsymbol{\Lambda}+\delta\boldsymbol{I}\right)
ight).$$

- Factored Spectrally Transformed LMM
- $O(N^3)$ once for spectral decomposition.
- Exact LMM solution.
- Bottlenecks: $O(N^3)$ runtime, $O(N^2)$ memory for **K**.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

$$\mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma_{\mathsf{g}}^{2}\left(\boldsymbol{\Lambda}+\delta\boldsymbol{I}\right)
ight).$$

- Factored Spectrally Transformed LMM
- $O(N^3)$ once for spectral decomposition.
- Exact LMM solution.

• Bottlenecks: $O(N^3)$ runtime, $O(N^2)$ memory for **K**.

- 日本 - 1 日本 - 日本 - 日本

$$\mathcal{N}\left(\boldsymbol{U}^{\top}\boldsymbol{y} \mid \boldsymbol{U}^{\top}\boldsymbol{X}\boldsymbol{\beta}, \sigma_{\mathsf{g}}^{2}\left(\boldsymbol{\Lambda}+\delta\boldsymbol{I}\right)
ight).$$

- Factored Spectrally Transformed LMM
- $O(N^3)$ once for spectral decomposition.
- Exact LMM solution.
- ▶ Bottlenecks: $O(N^3)$ runtime, $O(N^2)$ memory for K.

Linear regression view

- ▶ For linear similarities, a LMM is equivalent to a *linear regression*.
- All SNPs are used as regression covariates.
- Uncertainty about identity of true causal variants expressed by considering a distribution over the effect sizes.

 $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}\boldsymbol{\beta} \,,\, \sigma_{g}^{2}\boldsymbol{K} + \sigma^{2}\boldsymbol{I}\right).$

Linear regression view

- ► For linear similarities, a LMM is equivalent to a *linear regression*.
- All SNPs are used as regression covariates.
- Uncertainty about identity of true causal variants expressed by considering a distribution over the effect sizes.

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}\beta, \sigma_{g}^{2}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top} + \sigma^{2}\boldsymbol{I}\right).$$

Linear regression view

- ▶ For linear similarities, a LMM is equivalent to a *linear regression*.
- All SNPs are used as regression covariates.
- Uncertainty about identity of true causal variants expressed by considering a distribution over the effect sizes.

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}\beta, \sigma_{g}^{2}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top} + \sigma^{2}\boldsymbol{I}\right).$$

$$\propto \int \mathcal{N}\left(\left. oldsymbol{y}
ight. \mid oldsymbol{x}eta+ ilde{oldsymbol{X}}oldsymbol{ heta}\,,\,\sigma^2\deltaoldsymbol{I}
ight) \cdot\mathcal{N}\left(oldsymbol{ heta}\midoldsymbol{0}\,,\,\sigma^2_{ extbf{g}}oldsymbol{I}
ight) extbf{d}oldsymbol{ heta}.$$

Linear regression view

- ▶ For linear similarities, a LMM is equivalent to a *linear regression*.
- All SNPs are used as regression covariates.
- Uncertainty about identity of true causal variants expressed by considering a distribution over the effect sizes.

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}\beta, \sigma_{g}^{2}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top} + \sigma^{2}\boldsymbol{I}\right).$$

$$\propto \int \mathcal{N}\left(\left. oldsymbol{y} \mid oldsymbol{x}eta+ ilde{oldsymbol{X}}oldsymbol{ heta}\,,\,\sigma^2\deltaoldsymbol{I}
ight) \cdot\mathcal{N}\left(\left.oldsymbol{ heta}\midoldsymbol{0}\,,\,\sigma^2_{ extbf{g}}oldsymbol{I}
ight) \mathsf{d} heta.$$

Linear regression view

- ▶ For linear similarities, a LMM is equivalent to a *linear regression*.
- All SNPs are used as regression covariates.
- Uncertainty about identity of true causal variants expressed by considering a distribution over the effect sizes.

$$\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{x}\beta, \sigma_{g}^{2}\tilde{\boldsymbol{X}}\tilde{\boldsymbol{X}}^{\top} + \sigma^{2}\boldsymbol{I}\right).$$

$$\propto \int \mathcal{N}\left(\left. oldsymbol{y} \mid oldsymbol{x}eta+ ilde{oldsymbol{X}}oldsymbol{ heta}\,,\,\sigma^2\deltaoldsymbol{I}
ight)\cdot\mathcal{N}\left(\left.oldsymbol{ heta}\midoldsymbol{0}\,,\,\sigma^2_{ extbf{g}}oldsymbol{I}
ight) \mathsf{d}oldsymbol{ heta}.$$

Association by linkage to causal variant

- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

・ロト ・ 四ト ・ ヨト ・ ヨト

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

A LMM accounts for model misspecification when testing a univariate model when in reality the trait is multi-factorial.

- Association by linkage to causal variant
- SNPs confounded by population structure creates correlation between physically unlinked markers
- Spurious associations if not taken into account
- Alternatively condition on causal/confounded markers

A LMM accounts for model misspecification when testing a univariate model when in reality the trait is multi-factorial. Can we do better than using **all** SNPs for correction?

Dilution

High polygenicity

(b) High polygenicity

phenotype differentiated between populations plus causal variants

• Experiments:

removal of causal SNPs removal of differentiated SNPs addition of immercent SNPs

- AUC for detecting causa SNPs
- Genomic Control A on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

- AUC for detecting causal SNPs
- Genomic Control λ on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

- AUC for detecting causal SNPs
- Genomic Control Alon non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

Evaluation measures:

- AUC for detecting causality SNPs
- Genomic Control \label{eq:label} on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

- AUC for detecting causal SNPs
- Genomic Control X on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

Evaluation measures:

- AUC for detecting causal SNPs
- Genomic Control λ on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

イロト 不得 トイヨト イヨト

Dilution

High polygenicity

(b) High polygenicity

phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

Evaluation measures:

- AUC for detecting causal SNPs
- Genomic Control λ on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

イロト 不得 トイヨト イヨト

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

Evaluation measures:

- AUC for detecting causal SNPs
- Genomic Control λ on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Dilution

High polygenicity

(b) High polygenicity

 phenotype differentiated between populations plus causal variants

Experiments:

- removal of causal SNPs
- removal of differentiated SNPs
- addition of irrelevant SNPs

- AUC for detecting causal SNPs
- Genomic Control λ on non-causal SNPs
- FaST-LMM-Select optimizing phenotype prediction generally performs well

Compute similarity matrix based on SNPs

- Equivalent to linear regression conditioned on these SNPs
- Conditioning on SNPs within linkage to test marker reduces association.
 → Loss in power!
- Remove SNPs within linkage from computation of similarity matrix (infeasible if done naively!)

- Compute similarity matrix based on SNPs
- Equivalent to linear regression conditioned on these SNPs
- Conditioning on SNPs within linkage to test marker reduces association.
 → Loss in power!
- Remove SNPs within linkage from computation of similarity matrix (infeasible if done naively!)

- Compute similarity matrix based on SNPs
- Equivalent to linear regression conditioned on these SNPs
- Conditioning on SNPs within linkage to test marker reduces association.
 → Loss in power!
- Remove SNPs within linkage from computation of similarity matrix (infeasible if done naively!)

- Compute similarity matrix based on SNPs
- Equivalent to linear regression conditioned on these SNPs
- Conditioning on SNPs within linkage to test marker reduces association.
 → Loss in power!
- Remove SNPs within linkage from computation of similarity matrix (infeasible if done naively!)

- Having a SNP in the similarity matrix that is linked to the SNP tested leads to loss in power.
- Correct by removing a sliding window around test-SNP from the similarity matrix.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Correction is computed efficiently by subtracting a low-rank term.

- Having a SNP in the similarity matrix that is linked to the SNP tested leads to loss in power.
- Correct by removing a sliding window around test-SNP from the similarity matrix.
- Correction is computed efficiently by subtracting a low-rank term.

- WTCCC data (Chrohn's)
- 6 genetic similarity matrices with equal number of markers at increasing distance to SNPs tested

λ increases with distance

- Having a SNP in the similarity matrix that is linked to the SNP tested leads to loss in power.
- Correct by removing a sliding window around test-SNP from the similarity matrix.
- Correction is computed efficiently by subtracting a low-rank term.

- Having a SNP in the similarity matrix that is linked to the SNP tested leads to loss in power.
- Correct by removing a sliding window around test-SNP from the similarity matrix.
- Correction is computed efficiently by subtracting a low-rank term.

Inflammatory bowel disease [WTCCC, Nature 2007]

Algorithm parameters				Algorithm performance					
Name	SNP selection method	#SNPs in matrix	Avoid prox conta m	λ_{GC}	False Positives	True Positives	Runtime (min) without speedup	Runtime (min) with speedup	Memory use (GB)
FaST-LMM-Select	Select	310	yes	1.08	0	100	1.3 x 10 ³	45	<1
FaST-LMM all	All	All	yes	1.09	2	108	4.0 x 10 ⁶	4567	86
FaST-LMM orig 310	Equi-spaced	310	yes	1.26	15	128	1.1 x 10 ³	6	<1
FaST-LMM orig 4K	Equi-spaced	4000	yes	1.17	8	114	2.1 x 10 ⁵	30	2
Traditional	All	All	no	0.97	2	64	42	NA	45

SNPs considered True Positive if:

- Reported in WTCCC paper [WTCCC, Nature 2007]
- Reported in meta analysis [Franke et al., Nat Gen 2010]
- In major histocompatibility complex (MHC) region

Marginal likelihood of variance component models

- ► Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\beta) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X},) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I}\right)$$

・ロット (雪) (日) (日) (日)

Number of hyperparameters independent of number of SNPs
• Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$

• Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right)$

Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X},) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I}\right)$$

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$\begin{split} p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^2, \sigma_{g}^2) &= \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^2 \boldsymbol{I} \right) \\ &= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^2 \boldsymbol{X} \boldsymbol{X}^{\top} + \sigma^2 \boldsymbol{I} \right) \end{split}$$

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\sigma}^{2}, \boldsymbol{\sigma}_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \boldsymbol{\sigma}_{g}^{2}\boldsymbol{I}\right)$$
$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{\sigma}_{g}^{2}\boldsymbol{X}\boldsymbol{X}^{\top} + \boldsymbol{\sigma}^{2}\boldsymbol{I}\right)$$

► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$

Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

・ロット (雪) (日) (日) (日)

• K: (N × N) kernel or covariance induced by feature mapping ϕ .

- ► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

・ロット (雪) (日) (日) (日)

K: (N × N) kernel or covariance induced by feature mapping φ.

- ► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

► K: (N × N) kernel or covariance induced by feature mapping φ.

The missing heritability paradox

- Complex traits are regulated by a large number of small effects
 - Human height: the best single SNP explains little variance.
 - But: height of the parents are highly predictive for the height of the child!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{eta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathbf{g}}^2, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \mathbf{0} \,, \, \sigma_{\mathbf{g}}^2 \sum_{s=1}^S \frac{1}{S} \boldsymbol{x}_s \boldsymbol{x}_s^\top + \sigma^2 \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \text{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\rm g}^2, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\rm g}^2 \sum_{s=1}^S \frac{1}{S} \boldsymbol{x}_s \boldsymbol{x}_s^\top + \sigma^2 \boldsymbol{I} \big)$$

► Perform maximum marginal likelihood estimation on σ_z^2 and σ^2 . $\langle \Box \rangle \cdot \langle \Box \rangle$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2/S\right)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \left(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I} \right)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \text{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0}, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Approximate variance model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{g}^{2}, \sigma^{2}) = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top} + \sigma^{2} \boldsymbol{I} \right)$$

- Genetic variance σ²_g across chromosomes
- $\textbf{(Narrow-sense) heritability} \\ h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma^2} \approx \frac{\sum_{s=1}^S \beta_s^2}{\sum_{s=1}^S \beta_s^2 + \sigma^2}$
- Narrow-sense refers to linear additive part of the heritability

Approximate variance model

$$p(oldsymbol{y} \,|\, oldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(oldsymbol{y} \,|\, oldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} oldsymbol{X} oldsymbol{X}^ op + \sigma^2 oldsymbol{I}ig)$$

- Genetic variance σ²_g across chromosomes
- (Narrow-sense) heritability $h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma^2} \approx \frac{\sum_{s=1}^{S} \beta_s^2}{\sum_{s=1}^{S} \beta_s^2 + \sigma^2}$
- Narrow-sense refers to linear additive part of the heritability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Yang et al. 2011]

Approximate variance model

$$p(oldsymbol{y} \,|\, oldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(oldsymbol{y} \,|\, oldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} oldsymbol{X} oldsymbol{X}^ op + \sigma^2 oldsymbol{I}ig)$$

- Genetic variance σ²_g across chromosomes
- ► (Narrow-sense) heritability $h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \sigma^{2}} \approx \frac{\sum_{s=1}^{S} \beta_{s}^{2}}{\sum_{s=1}^{S} \beta_{s}^{2} + \sigma^{2}}$
- Narrow-sense refers to linear additive part of the heritability

[Yang et al. 2011]

Approximate variance model

$$p(\boldsymbol{y} \,|\, \boldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(\boldsymbol{y} \,|\, \boldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} \boldsymbol{X} \boldsymbol{X}^ op + \sigma^2 \boldsymbol{I} ig)$$

- Genetic variance σ²_g across chromosomes
- ► (Narrow-sense) heritability $h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \sigma^{2}} \approx \frac{\sum_{s=1}^{S} \beta_{s}^{2}}{\sum_{s=1}^{S} \beta_{s}^{2} + \sigma^{2}}$
- Narrow-sense refers to linear additive part of the heritability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

[Yang et al. 2011]

-

- ► Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\beta) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X},) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I}\right)$$

・ロット (雪) (日) (日) (日)

• Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$

• Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right)$

Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X},) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I}\right)$$

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$\begin{split} p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^2, \sigma_{g}^2) &= \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^2 \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^2 \boldsymbol{I} \right) \\ &= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^2 \boldsymbol{X} \boldsymbol{X}^{\top} + \sigma^2 \boldsymbol{I} \right) \end{split}$$

- Consider a linear model, accounting for a set of measured SNPs \boldsymbol{X} $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I}\right)$
- Choose identical Gaussian prior for all weights $p(\boldsymbol{\beta}) = \prod_{s=1}^{S} \mathcal{N} \left(\beta_s \mid 0, \sigma_g^2 \right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\sigma}^{2}, \boldsymbol{\sigma}_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{X}\boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\boldsymbol{I}\right) \mathcal{N}\left(\boldsymbol{\beta} \mid \boldsymbol{0}, \boldsymbol{\sigma}_{g}^{2}\boldsymbol{I}\right)$$
$$= \mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{0}, \boldsymbol{\sigma}_{g}^{2}\boldsymbol{X}\boldsymbol{X}^{\top} + \boldsymbol{\sigma}^{2}\boldsymbol{I}\right)$$

► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$

Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

・ロット (雪) (日) (日) (日)

• K: (N × N) kernel or covariance induced by feature mapping ϕ .

- ► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

・ロット (雪) (日) (日) (日)

► K: (N × N) kernel or covariance induced by feature mapping φ.

- ► The analogous derivation can be repeated for a feature mapping ϕ $p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}\left(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{\phi}(\boldsymbol{x}_s)\beta_s, \sigma^2 \boldsymbol{I}\right) =$ $\mathcal{N}\left(\boldsymbol{y} \mid \boldsymbol{\Phi}(\boldsymbol{X})\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}\right)$
- Marginal likelihood

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\beta}} \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I} \right) \mathcal{N} \left(\boldsymbol{\beta} \mid \boldsymbol{0}, \sigma_{g}^{2} \boldsymbol{I} \right)$$
$$= \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \underbrace{\boldsymbol{\varPhi}(\boldsymbol{X}) \boldsymbol{\varPhi}(\boldsymbol{X})^{\top}}_{\boldsymbol{K}} + \sigma^{2} \boldsymbol{I} \right)$$

► K: (N × N) kernel or covariance induced by feature mapping φ.

The missing heritability paradox

- Complex traits are regulated by a large number of small effects
 - Human height: the best single SNP explains little variance.
 - But: height of the parents are highly predictive for the height of the child!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{eta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathbf{g}}^2, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \mathbf{0} \,, \, \sigma_{\mathbf{g}}^2 \sum_{s=1}^S \frac{1}{S} \boldsymbol{x}_s \boldsymbol{x}_s^\top + \sigma^2 \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \text{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\rm g}^2, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\rm g}^2 \sum_{s=1}^S \frac{1}{S} \boldsymbol{x}_s \boldsymbol{x}_s^\top + \sigma^2 \boldsymbol{I} \big)$$

► Perform maximum marginal likelihood estimation on σ_z^2 and σ^2 . $\langle \Box \rangle \cdot \langle \Box \rangle$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2/S\right)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \left(\boldsymbol{y} \mid \sum_{s \in \mathsf{causal}} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I} \right)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0} \,, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Application to GWAS

Linear additive models for complex traits

Multiple linear regression model over causal SNPs

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N} \big(\boldsymbol{y} \mid \sum_{s \in \text{causal}} \boldsymbol{x}_s \beta_s \,, \, \sigma^2 \boldsymbol{I} \big)$$

Which SNPs are causal ? Approximation: consider all S available common SNPs [Yang et al. 2011]

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}, \sigma^2) = \mathcal{N}(\boldsymbol{y} \mid \sum_{s=1}^{S} \boldsymbol{x}_s \beta_s, \sigma^2 \boldsymbol{I})$$

- Causal SNPs either in the model or "tagged" by linkage disequilibrium to nearby common SNPs
- Uncertainty over causal SNPs: Prior on all SNP effects $p(\beta_s) = \mathcal{N}(\beta_s \mid 0, \sigma_g^2/S)$
- Marginalize out weights

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{\mathsf{g}}^{2}, \sigma^{2}) = \mathcal{N} \big(\boldsymbol{y} \mid \boldsymbol{0}, \, \sigma_{\mathsf{g}}^{2} \sum_{s=1}^{S} \frac{1}{S} \boldsymbol{x}_{s} \boldsymbol{x}_{s}^{\top} + \sigma^{2} \boldsymbol{I} \big)$$

Approximate variance model

$$p(\boldsymbol{y} \mid \boldsymbol{X}, \sigma_{g}^{2}, \sigma^{2}) = \mathcal{N} \left(\boldsymbol{y} \mid \boldsymbol{0}, \sigma_{g}^{2} \frac{1}{S} \boldsymbol{X} \boldsymbol{X}^{\top} + \sigma^{2} \boldsymbol{I} \right)$$

- Genetic variance σ²_g across chromosomes
- $\textbf{(Narrow-sense) heritability} \\ h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma^2} \approx \frac{\sum_{s=1}^S \beta_s^2}{\sum_{s=1}^S \beta_s^2 + \sigma^2}$
- Narrow-sense refers to linear additive part of the heritability

Approximate variance model

$$p(oldsymbol{y} \,|\, oldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(oldsymbol{y} \,|\, oldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} oldsymbol{X} oldsymbol{X}^ op + \sigma^2 oldsymbol{I}ig)$$

- Genetic variance σ²_g across chromosomes
- (Narrow-sense) heritability $h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma^2} \approx \frac{\sum_{s=1}^{S} \beta_s^2}{\sum_{s=1}^{S} \beta_s^2 + \sigma^2}$
- Narrow-sense refers to linear additive part of the heritability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

[Yang et al. 2011]

Approximate variance model

$$p(oldsymbol{y} \,|\, oldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(oldsymbol{y} \,|\, oldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} oldsymbol{X} oldsymbol{X}^ op + \sigma^2 oldsymbol{I}ig)$$

- Genetic variance σ²_g across chromosomes
- ► (Narrow-sense) heritability $h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \sigma^{2}} \approx \frac{\sum_{s=1}^{S} \beta_{s}^{2}}{\sum_{s=1}^{S} \beta_{s}^{2} + \sigma^{2}}$
- Narrow-sense refers to linear additive part of the heritability

[Yang et al. 2011]

Approximate variance model

$$p(\boldsymbol{y} \,|\, \boldsymbol{X}, \sigma_{\mathsf{g}}^2, \sigma^2) = \mathcal{N}ig(\boldsymbol{y} \,|\, \boldsymbol{0}, \sigma_{\mathsf{g}}^2 rac{1}{S} \boldsymbol{X} \boldsymbol{X}^ op + \sigma^2 \boldsymbol{I} ig)$$

- Genetic variance σ²_g across chromosomes
- ► (Narrow-sense) heritability $h^{2} = \frac{\sigma_{g}^{2}}{\sigma_{g}^{2} + \sigma^{2}} \approx \frac{\sum_{s=1}^{S} \beta_{s}^{2}}{\sum_{s=1}^{S} \beta_{s}^{2} + \sigma^{2}}$
- Narrow-sense refers to linear additive part of the heritability

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

[Yang et al. 2011]

-

ï≫į

・ロト・日本・日本・日本・日本・日本

Outline

GWAS Introduction

Population Structure Population structur

Population structure correction

Genomic control Linear mixed models (LMM) FaST linear mixed models Dilution

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Proximal contamination

FaST-LMM-Set

FaST-LMM-Set

Aggregate effects within a gene or pathway

- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

- Aggregate effects within a gene or pathway
- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

 $\underbrace{\sigma^{2}I}_{\text{noise}} \left| \prod_{j=1}^{s} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{c}^{2}\right) \right|$

- ロ ト - 4 回 ト - 4 □ - 4

- Aggregate effects within a gene or pathway
- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

 $\underbrace{\sigma^{2}\boldsymbol{I}}_{\mathsf{noise}} \left| \begin{array}{c} \prod_{j=1}^{s} \mathcal{N}\left(\beta_{s} \mid 0 \,, \, \sigma_{c}^{2}\right) \mathrm{d}\boldsymbol{\beta} \end{array} \right|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Aggregate effects within a gene or pathway
- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Aggregate effects within a gene or pathway
- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

- Aggregate effects within a gene or pathway
- Variance component test (e.g. [Wu et al 2011])
- Correct for population structure
- Perform a Likelihood ratio test

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Empirically, the LRT outperforms the score test in terms of power

Likelihood-Ratio test vs. Score test

- For convenience most variance component tests use Score tests (e.g. [Wu et al. 2011])
- For the likelihood ratio test (LRT) no exact null distribution is known (Permutations are prohibitive!)
- Small number of permutations
- a parametric fit to get an accurate and efficient estimate of the null distribution of the LRT.

