Linear models for GWAS

II: Linear mixed models

Christoph Lippert

Microsoft Research, Los Angeles, USA

October 17th 2012 1

Current topics in computational biology UCLA October 15^{th} , 2012

Linear models for GWAS II

October 15^{th}

Introduction

- Terminology
- Study design
- Data preparation
- Challenges and pitfalls
- Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - ▶ Parameter estimation
 - Variance component: modeling
 - \sim Phenotype prediction

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - \sim Parameter estimation
 - Variance component: modeling
 - Phenotype prediction

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component: modeling
 - Phenotype prediction

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component: modeling
 - Phenotype prediction

イロト イポト イヨト イヨト

October 17th 2012

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

イロト 不得下 イヨト イヨト 二日

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

イロト 不得下 イヨト イヨト 二日

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

Probabilities

- ► Let X be a random variable, defined over a set X or measurable space.
- P(X = x) denotes the probability that X takes value x, short p(x).
 Probabilities are positive, P(X = x) ≥ 0
 Probabilities complete one

- ► Let X be a random variable, defined over a set X or measurable space.
- P(X = x) denotes the probability that X takes value x, short p(x).
 - Probabilities are positive, $P(X = x) \ge 0$
 - Probabilities sum to one

- ► Let X be a random variable, defined over a set X or measurable space.
- P(X = x) denotes the probability that X takes value x, short p(x).
 - Probabilities are positive, $P(X = x) \ge 0$
 - Probabilities sum to one

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

October 17^{th} 2012 3

Linear models for GWAS II

- ► Let X be a random variable, defined over a set X or measurable space.
- P(X = x) denotes the probability that X takes value x, short p(x).
 - Probabilities are positive, $P(X = x) \ge 0$
 - Probabilities sum to one

$$\int_{x \in \mathcal{X}} p(x) dx = 1 \qquad \sum_{x \in \mathcal{X}} p(x) = 1$$

- ► Let X be a random variable, defined over a set X or measurable space.
- P(X = x) denotes the probability that X takes value x, short p(x).
 - Probabilities are positive, $P(X = x) \ge 0$
 - Probabilities sum to one

$$\int_{x \in \mathcal{X}} p(x) dx = 1 \qquad \sum_{x \in \mathcal{X}} p(x) = 1$$

Probability Theory

Joint Probability

$$P(X = x_i, Y = y_j) = \frac{n_{i,j}}{N}$$

Marginal Probability

$$P(X = x_i) = \frac{c_i}{N}$$

Conditional Probability

$$P(Y = y_j \mid X = x_i) = \frac{n_{i,j}}{c_i}$$

(日) (四) (三) (三) (三)

(C.M. Bishop, Pattern Recognition and Machine Learning)

C. Lippert

Linear models for GWAS II

October 17th 2012 4

Probability Theory

Marginal Probability

$$P(X = x_i) = \frac{c_i}{N}$$

 $P(Y = y_j \mid X = x_i) = \frac{n_{i,j}}{c_i}$

Conditional Probability

Product Rule

$$P(X = x_i, Y = y_j) = \frac{n_{i,j}}{N} = \frac{n_{i,j}}{c_i} \cdot \frac{c_i}{N}$$
$$= P(Y = y_j | X = x_i)P(X = x_i)$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

C. Lippert

Linear models for GWAS II

October 17th 2012 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Probability Theory

Sum Rule

$$P(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{i,j}$$
$$= \sum_j P(X = x_i, Y = y_j)$$

Product Rule

$$P(X = x_i, Y = y_j) = \frac{n_{i,j}}{N} = \frac{n_{i,j}}{c_i} \cdot \frac{c_i}{N}$$
$$= P(Y = y_j | X = x_i)P(X = x_i)$$

(C.M. Bishop, Pattern Recognition and Machine Learning)

C. Lippert

Linear models for GWAS II

October 17th 2012 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Rules of Probability

Sum & Product Rule

$$\begin{array}{ll} \mathsf{Sum} \ \mathsf{Rule} & p(x) = \sum_y p(x,y) \\ \mathsf{Product} \ \mathsf{Rule} & p(x,y) = p(y\,|\,x) p(x) \end{array}$$

C. Lippert

Linear models for GWAS II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

October 17th 2012 5

The Rules of Probability

Bayes Theorem

Using the product rule we obtain

$$p(y \mid x) = \frac{p(x \mid y)p(y)}{p(x)}$$
$$p(x) = \sum_{y} p(x \mid y)p(y)$$

Linear models for GWAS II

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

October 17th 2012 6

Bayesian probability calculus

- Bayes rule is the basis for inference and learning.
- Assume we have a model with parameters θ, e.g.

$$y = \theta_0 + \theta_1 \cdot x$$

• Goal: learn parameters θ given Data \mathcal{D} .

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \quad p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

- Likelihood
- Prior

October 17th 2012

7

C. Lippert

Linear models for GWAS II

Bayesian probability calculus

- Bayes rule is the basis for inference and learning.
- Assume we have a model with parameters θ, e.g.

$$y = \theta_0 + \theta_1 \cdot x$$

• Goal: learn parameters $\boldsymbol{\theta}$ given Data \mathcal{D} .

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \boldsymbol{\theta}) \quad p(\boldsymbol{\theta})}{p(\mathcal{D})}$$

posterior \propto likelihood \cdot prior

- Posterior
- Likelihood
- Prior

C. Lippert

Linear models for GWAS II

October 17th 2012 7

(日) (同) (三) (三)

Probability distributions

Gaussian

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Multivariate Gaussian

$$p(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N} \left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma} \right)$$
$$= \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

C. Lippert

Linear models for GWAS II

 $\exists \flat \triangleleft \exists \flat \exists \lor \heartsuit \Diamond \Diamond \Diamond \bigcirc$ October 17th 2012 8

Probability distributions

Gaussian

$$p(x \mid \mu, \sigma^2) = \mathcal{N}(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Multivariate Gaussian

$$p(x \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \mathcal{N} \left(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma} \right)$$
$$= \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

C. Lippert

Linear models for GWAS II

 $\mathbb{E} \rightarrow \mathbb{E} \rightarrow \mathbb{E} = \mathcal{O} \land \mathbb{C}$ October 17^{th} 2012 8

Genome wide association studies (GWAS)

- Identify associations between variable genetic loci and phenotypes.
 - Linear and logistic regression
 - Statistical dependence tests

```
(F-test, likelihood ratio)
```


Genome wide association studies (GWAS)

- Identify associations between variable genetic loci and phenotypes.
 - Linear and logistic regression
 - Statistical dependence tests
 - (F-test, likelihood ratio)

$$\frac{\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{e}}^{2}\mathbf{I}\right)}{\mathcal{N}\left(\mathbf{y}|\mathbf{0};\sigma_{\mathrm{e}}^{2}\mathbf{I}\right)}$$
(1)

(日) (同) (三) (三)

Population stratification

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

(日) (周) (日) (日)

Population stratification

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

(日) (周) (日) (日)

3

10

October 17th 2012

Population stratification

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

(日) (周) (日) (日)

Population stratification

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

(日) (周) (日) (日)

Population stratification

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

(日)

October 17th 2012 10

Population stratification

GWA on inflammatory bowel disease (WTCCC)

▶ 3.4k cases, 11.9k controls

[Burton et al., 2007]

11

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 17^{th} 2012

Linear models for GWAS II

Population stratification

GWA on inflammatory bowel disease (WTCCC)

- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

[Burton et al., 2007]

11

October 17th 2012

Linear models for GWAS II

Population stratification

GWA on inflammatory bowel disease (WTCCC)

- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

Linear models for GWAS II

 \geq [Burgton et al., 2007] October 17th 2012 11 Population structure correction

Outline

Probability Theory

Population Structure

Population structure correction

Variance component models Multi locus models Phenotype prediction

Linear models for GWAS II

October 17^{th} 2012

Population structure correction

Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

 $\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$

- $\lambda = 1$: Calibrated *P*-values
- $\lambda > 1$: Inflation
- $\lambda < 1$: Deflation
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.

C. Lippert

Linear models for GWAS II

October 17th 2012 13
Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

$$\lambda = \frac{\text{median}(2LR)}{\text{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *P*-values
- $\lambda > 1$: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.

C. Lippert

Linear models for GWAS II

Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *P*-values
- $\lambda > 1$: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.

C. Lippert

Linear models for GWAS II

Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *P*-values
- $\lambda > 1$: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.

Very conservative.

Linear models for GWAS II

Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

$$\lambda = \frac{\mathrm{median}(2LR)}{\mathrm{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *P*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.

/erv_conservative

Genomic control [Devlin and Roeder, Biometrics 1999]

• Genomic control λ

$$\lambda = \frac{\text{median}(2LR)}{\text{median}(\chi^2)}.$$

- $\lambda = 1$: Calibrated *P*-values
- ▶ λ > 1: Inflation
- ▶ λ < 1: Deflation</p>
- Correct by dividing test statistic by λ.
- Applicable in combination with every method.
- Does not change (non-)uniformity of *P*-values.
- Very conservative.

Linear models for GWAS II

- Population structure causes genome-wide correlations between SNPs
- A large part of the total variation in the SNPs can be explained by population differences.
- Novembre et al. [2008] show that the eigenvectors of the SNP covariance matrix reflect population structure.
- Eigenstrat uses this property to correct for population structure in GWAS.

October 17th 2012

14

[Price et al., 2006, Patterson et al., 2006, Novembre et al., 2008] C. Lippert Linear models for GWAS II

- Population structure causes genome-wide correlations between SNPs
- A large part of the total variation in the SNPs can be explained by population differences.
- Novembre et al. [2008] show that the eigenvectors of the SNP covariance matrix reflect population structure.
- Eigenstrat uses this property to correct for population structure in GWAS.

[Price et al., 2006, Patterson et al., 2006, Novembre et al., 2008] C. Lippert Linear models for GWAS II

- Population structure causes genome-wide correlations between SNPs
- A large part of the total variation in the SNPs can be explained by population differences.
- Novembre et al. [2008] show that the eigenvectors of the SNP covariance matrix reflect population structure.
- Eigenstrat uses this property to correct for population structure in GWAS.

[Price et al., 2006, Patterson et al., 2006, Novembre et al., 2008] C. Lippert Linear models for GWAS II

- Population structure causes genome-wide correlations between SNPs
- A large part of the total variation in the SNPs can be explained by population differences.
- Novembre et al. [2008] show that the eigenvectors of the SNP covariance matrix reflect population structure.
- Eigenstrat uses this property to correct for population structure in GWAS.

October 17th 2012

14

[Price et al., 2006, Patterson et al., 2006, Novembre et al., 2008] C. Lippert Linear models for GWAS II

Eigenstrat

Eigenstrat procedure:

- Compute covariance matrix based on SNPs
- Compute eigenvectors of covariance matrix
- Add largest eigenvector as covariate to regression.
- Repeat until *P*-values are uniform.

[Price et alphonometal

Linear models for GWAS II

October 17th 2012 15

3

イロト イポト イヨト イヨト

enome-wide SNP covariance

Eigenstrat procedure:

- Compute covariance matrix based on SNPs
- Compute eigenvectors of covariance matrix
- Add largest eigenvector as covariate to regression.
- Repeat until *P*-values are uniform.

Linear models for GWAS II

October 17th 2012 15

Eigenstrat procedure:

- Compute covariance matrix based on SNPs
- Compute eigenvectors of covariance matrix
- Add largest eigenvector as covariate to regression.
- Repeat until *P*-values are uniform.

[Price et al polo

Linear models for GWAS II

Eigenstrat procedure:

- Compute covariance matrix based on SNPs
- Compute eigenvectors of covariance matrix
- Add largest eigenvector as covariate to regression.
- Repeat until *P*-values are uniform.

[Price et al PD06]

Linear models for GWAS II

Eigenstrat procedure:

- Compute covariance matrix based on SNPs
- Compute eigenvectors of covariance matrix
- Add largest eigenvector as covariate to regression.
- Repeat until *P*-values are uniform.

[Price et alphonet

Linear mixed models (LMM)

Covariance matrix K

- Estimated from SNP data
- Kinship coefficients
 - Identity by state
 Identity by descent
- Realized relationship matrix (linear)

・ロト ・ 理ト ・ ヨト ・ ヨト

- Sample random effect **u**.
- Sample phenotype y.

Linear models for GWAS II

 $\Xi
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Omega}
ightarrow$

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 Identity by descent
 - Realized relationship matrix (linear)

イロト イポト イヨト イヨト

- Sample random effect **u**.
- Sample phenotype y.

Linear models for GWAS II

 $\Xi
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Xi}
ightarrow \overline{\Omega}
ightarrow$

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

イロト イポト イヨト イヨト

- Sample random effect **u**.
- Sample phenotype y.

Linear models for GWAS II

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

イロト イポト イヨト イヨト

October 17th 2012

- Sample random effect u.
- Sample phenotype y.

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

イロト イポト イヨト イヨト

Sample random effect u.

Sample phenotype y.

Linear models for GWAS II

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

- Sample random effect **u**.
- Sample phenotype y.

Linear models for GWAS II

Linear mixed models (LMM)

- Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

(日) (同) (三) (三)

- Sample random effect u.
- Sample phenotype y.

$$\int_{\mathbf{u}} \mathcal{N}\left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta} + \mathbf{u}; \sigma_{e}^{2} \mathbf{I}\right) \mathcal{N}\left(\mathbf{u} | \mathbf{0}; \sigma_{g}^{2} \mathbf{K}\right)$$

C. Lippert

Linear mixed models (LMM)

- ► Covariance matrix K
 - Estimated from SNP data
 - Kinship coefficients
 - Identity by state
 - Identity by descent
 - Realized relationship matrix (linear)

nopulation structure SNPs ATGACCTGAAACTGGGGGGACTGACGTGGAACGGT structure ATGACCTGCAACTGGGGGGGCTGACGTGCAACGGT ic relatedness ATGACCTGCAACTGGGGGGGCTGACGTGCAACGGT ATGACCTGAAACTGGGGGGATTGACGTGGAACGG CTGCAACTGGGGGATTGACGTGCAACGGT GACCTGCAACTGGGGGGATTGACGTGCAACGGT v Genome-wide SNP covarianc $\sim \mathcal{N}(\mathbf{0}; \sigma_a^2 \mathbf{K})$ phenotype x к

(日) (同) (三) (三)

- Sample random effect **u**.
- Sample phenotype y.

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

Linear mixed models (LMM)

- Corrects for all levels of population structure.
- ML estimation is computationally demanding

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

< ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Linear mixed models (LMM)

- Corrects for all levels of population structure.
- ML estimation is computationally demanding

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

イロト イポト イヨト イヨト

Linear models for GWAS II

Linear mixed models (LMM)

- Corrects for all levels of population structure.
- ML estimation is computationally demanding

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

イロト イポト イヨト イヨト

Linear models for GWAS II

Linear mixed models (LMM)

- Corrects for all levels of population structure.
- ML estimation is computationally demanding
 - ▶ Non-convex in σ_{σ}^2 and σ_{e}^2

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

イロト イポト イヨト イヨト

October 17th 2012

17

Linear models for GWAS II

Linear mixed models (LMM)

- Corrects for all levels of population structure.
- ML estimation is computationally demanding
 - ▶ Non-convex in $\sigma_{\rm g}^2$ and $\sigma_{\rm e}^2$.

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\mathbf{K}+\sigma_{e}^{2}\mathbf{I}\right)$$

GWAS for Flowering Time in Arabidopsis thaliana

Linear Model:

QQ-plot:

October 17th 2012 18

< A

GWAS for Flowering Time in Arabidopsis thaliana

Linear Model:

Linear Mixed Model:

GWAS for Flowering Time in Arabidopsis thaliana

Linear Mixed Model:

QQ-plot:

Linear mixed models (LMM)

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \mathbf{K} + \sigma_{e}^{2} \mathbf{I} \right).$$

[Kang et al., 2008]

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 17th 2012

Linear mixed models (LMM)

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \mathbf{K} + \sigma_{e}^{2} \mathbf{I} \right).$$

Change of variables, introducing $\delta = \sigma_e^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N}\left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I}\right)\right).$$

[Kang et al., 2008]

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで October 17th 2012

Linear mixed models (LMM)

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \mathbf{K} + \sigma_{e}^{2} \mathbf{I} \right).$$

• Change of variables, introducing $\delta = \sigma_e^2 / \sigma_g^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N}\left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I}\right)\right).$$

- ML-parameters $\hat{\boldsymbol{\beta}}$ and $\hat{\sigma_{g}^{2}}$ follow in closed form.

[Kang et al., 2008]

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで October 17th 2012

Linear mixed models (LMM)

LMM log likelihood

$$LL(\boldsymbol{\beta}, \sigma_{\mathrm{g}}^{2}, \sigma_{\mathrm{e}}^{2}) = \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{\mathrm{g}}^{2} \mathbf{K} + \sigma_{\mathrm{e}}^{2} \mathbf{I} \right).$$

• Change of variables, introducing $\delta = \sigma_{\rm e}^2/\sigma_{\rm g}^2$:

$$LL(\boldsymbol{\beta}, \sigma_{g}^{2}, \delta) = \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right).$$

- ML-parameters $\hat{\beta}$ and $\hat{\sigma}_{g}^{2}$ follow in closed form.
- Use optimizer to solve 1-dimensional optimization problem over δ .

[Kang et al., 2008]

October 17th 2012

Linear mixed models (LMM)

ML parameters

Gradient of the LMM log likelihood w.r.t. m eta

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

Linear mixed models (LMM)

ML parameters

Gradient of the LMM log likelihood w.r.t. m eta

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで
Linear mixed models (LMM)

ML parameters

Gradient of the LMM log likelihood w.r.t. m eta

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 22

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{ML} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

C. Lippert

Linear models for GWAS II

October 17th 2012

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

C. Lippert

Linear models for GWAS II

October 17th 2012

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

C. Lippert

Linear models for GWAS II

October 17th 2012

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 22

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

Note that this solution is analogous to the ML solution of the linear regression

C. Lippert

Linear models for GWAS II

October 17th 2012 22

Linear mixed models (LMM) ML parameters

Gradient of the LMM log likelihood w.r.t. β

$$\nabla_{\boldsymbol{\beta}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right) = \nabla_{\boldsymbol{\beta}} - \frac{1}{2\sigma_{g}^{2}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$
$$= \frac{1}{\sigma_{g}^{2}} \left[-\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} + \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right]$$

set gradient to zero:

$$\mathbf{0} = \frac{1}{\sigma_{g}^{2}} \left[\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y} - \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} \right]$$
$$\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$
$$\boldsymbol{\beta}_{\mathsf{ML}} = \left(\mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \mathbf{y}$$

Note that this solution is analogous to the ML solution of the linear regression $(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters Derivative of the LMM log likelihood w.r.t. σ_{σ}^2

$$\begin{split} \frac{\partial}{\partial \sigma_{\rm g}^2} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{\rm g}^2 \left(\mathbf{K} + \delta \mathbf{I} \right) \right) \\ = -\frac{1}{2} \left[\frac{N}{\sigma_{\rm g}^2} - \frac{N}{\sigma_{g}^4} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\rm T} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right] \end{split}$$

 Bottleneck: For every SNP dual we test we need to calculate (0.5 ± 01)

► If done naively, this is an $O(N^3)$ operation per SNP.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{\rm g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

 Bottleneck: Torresony SNP dual we test we need to calculate (10-1-01)

► If done naively, this is an $O(N^3)$ operation per SNP.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

$$r_{g \mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

 Bottleneck: For every SNP that we test we need to calculate (10-10)

► If done naively, this is an $O(N^3)$ operation per SNP.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

Bottleneck: Constant of the second second to calculate a second by calculate a second by calculate a second by calculate a second secon

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

Bottleneck: Bottleneck and the balance between each to calculate the second sec

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X}\boldsymbol{\beta} \right)$$

 Bottleneck: For every SNP that we test we need to calculate (KC + δI)⁻¹.

► If done naively, this is an $O(N^3)$ operation per SNP.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

Bottleneck: For every SNP that we test we need to calculate (K + δI)⁻¹.
 If done naively, this is an O(N³) operation per SNP.

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

• Bottleneck: For every SNP that we test we need to calculate $(\mathbf{K} + \delta \mathbf{I})^{-1}$.

• If done naively, this is an $O(N^3)$ operation per SNP, (very

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

• Bottleneck: For every SNP that we test we need to calculate $(\mathbf{K} + \delta \mathbf{I})^{-1}$.

▶ If done naively, this is an $O(N^3)$ operation per SNP. (very expensive)

C. Lippert

Linear models for GWAS II

Linear mixed models (LMM)

ML parameters

Derivative of the LMM log likelihood w.r.t. $\sigma_{
m g}^2$

$$\frac{\partial}{\partial \sigma_{g}^{2}} \log \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{K} + \delta \mathbf{I} \right) \right)$$
$$= -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$

set derivative to zero:

$$0 = -\frac{1}{2} \left[\frac{N}{\sigma_{g}^{2}} - \frac{N}{\sigma_{g}^{4}} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right) \right]$$
$$\sigma_{g\mathsf{ML}}^{2} = \frac{1}{N} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)^{\mathrm{T}} \left(\mathbf{K} + \delta \mathbf{I} \right)^{-1} \left(\mathbf{y} - \mathbf{X} \boldsymbol{\beta} \right)$$

• Bottleneck: For every SNP that we test we need to calculate $(\mathbf{K} + \delta \mathbf{I})^{-1}$.

• If done naively, this is an $O(N^3)$ operation per SNP. (very expensive!)

October 17th 2012

23

C. Lippert

Linear models for GWAS II

FaST LMM

 $\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).$

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 24

FaST LMM

$$\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)
ight).$$

$$= \mathcal{N}\left(\mathbf{y} | \mathbf{X} \boldsymbol{\beta}; \sigma_{g}^{2} \left(\mathbf{U} \mathbf{S} \mathbf{U}^{T} + \delta \mathbf{I} \right) \right).$$

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

FaST LMM

$$\begin{split} \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).\\ = \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{U}\mathbf{S}\mathbf{U}^{\mathrm{T}}+\delta\mathbf{I}\right)\right). \end{split}$$

 $= \mathcal{N} \left(\mathbf{U}^{\mathrm{T}} \mathbf{y} | \mathbf{U}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta}; \sigma_{\mathrm{g}}^{2} \left(\mathbf{U}^{\mathrm{T}} \mathbf{U} \mathbf{S} \mathbf{U}^{\mathrm{T}} \mathbf{U} + \delta \mathbf{U}^{\mathrm{T}} \mathbf{U} \right) \right).$

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 24

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

FaST LMM

$$\begin{split} \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{U}\mathbf{S}\mathbf{U}^{\mathrm{T}}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\mathbf{S}\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}+\delta\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\right)\right). \end{split}$$

[Lippert et al., 2011] C. Lippert

Linear models for GWAS II

October 17th 2012 24

FaST LMM

$$\begin{split} \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{U}\mathbf{S}\mathbf{U}^{\mathrm{T}}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\mathbf{S}\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}+\delta\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right). \end{split}$$

[Lippert et al., 2011] C. Lippert

Linear models for GWAS II

October 17^{th} 2012

FaST LMM

$$\begin{split} \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{U}\mathbf{S}\mathbf{U}^{\mathrm{T}}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\mathbf{S}\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}+\delta\underbrace{\mathbf{U}_{\mathbf{I}}^{\mathrm{T}}\mathbf{U}}_{\mathbf{I}}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right). \end{split}$$

[Lippert et al., 2011] C. Lippert

Linear models for GWAS II

October 17th 2012 24

э

FaST LMM

$$\begin{split} \mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{K}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{y}|\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{USU}^{T}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{T}\mathbf{y}|\mathbf{U}^{T}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\underbrace{\mathbf{U}^{T}\mathbf{U}\mathbf{S}}_{\mathbf{I}}\underbrace{\mathbf{U}^{T}\mathbf{U}}_{\mathbf{I}}+\delta\underbrace{\mathbf{U}^{T}\mathbf{U}}_{\mathbf{I}}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{T}\mathbf{y}|\mathbf{U}^{T}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right).\\ &=\mathcal{N}\left(\mathbf{U}^{T}\mathbf{y}|\mathbf{U}^{T}\mathbf{X}\boldsymbol{\beta};\sigma_{g}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right).\\ &\underbrace{\mathbf{V}_{g}}^{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}, \underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}}\underbrace{\mathbf{V}_{g}}\underbrace{\mathbf{V}_{g}}\underbrace{\mathbf{V}_{g}}_{\mathbf{Y}}\underbrace{\mathbf{V}_{g}$$

October 17^{th} 2012 24

$$\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}oldsymbol{eta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{S}+\delta\mathbf{I}
ight)
ight).$$

Factored Spectrally Transformed LMM

► O(N³) once for spectral decomposition.

• $O(N^2)$ runtime per SNP tested (multiplication with ${f U}^{
m T}$).

• $O(N^2)$ memory for storing **K** and **U**.

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 25

(2)

$$\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right).$$
 (2)

Factored Spectrally Transformed LMM

- $O(N^3)$ once for spectral decomposition.
- $O(N^2)$ runtime per SNP tested (multiplication with ${f U}^{
 m T}$).
- $O(N^2)$ memory for storing **K** and **U**.

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 25

$$\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right).$$
(2)

Factored Spectrally Transformed LMM

- $O(N^3)$ once for spectral decomposition.
- $O(N^2)$ runtime per SNP tested (multiplication with \mathbf{U}^{T}).

• $O(N^2)$ memory for storing **K** and **U**.

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 25

$$\mathcal{N}\left(\mathbf{U}^{\mathrm{T}}\mathbf{y}|\mathbf{U}^{\mathrm{T}}\mathbf{X}\boldsymbol{\beta};\sigma_{\mathrm{g}}^{2}\left(\mathbf{S}+\delta\mathbf{I}\right)\right).$$
(2)

Factored Spectrally Transformed LMM

- $O(N^3)$ once for spectral decomposition.
- $O(N^2)$ runtime per SNP tested (multiplication with \mathbf{U}^{T}).
- $O(N^2)$ memory for storing K and U.

[Lippert et al., 2011]

C. Lippert

Linear models for GWAS II

October 17th 2012 25

- 4 @ > - 4 @ > - 4 @ >

Summary

Population structure correction

Genomic control

- Simple method
- Works with any statistical test
- Can be combined with other correction methods
- Very conservative!

Eigenstrat (PCA)

- Corrects well for differences on population level
- Does not work well for closer relatedness
- Linear mixed models
 - Corrects well for most forms of relatedness.

Linear models for GWAS II

イロト 不得下 イヨト イヨト 二日

October 17^{th} 2012

Summary

Population structure correction

Genomic control

- Simple method
- Works with any statistical test
- Can be combined with other correction methods
- Very conservative!

Eigenstrat (PCA)

- Corrects well for differences on population level
- Does not work well for closer relatedness

Linear mixed models

Corrects well for most forms of relatedness.

イロト 不得下 イヨト イヨト 二日

Summary

Population structure correction

Genomic control

- Simple method
- Works with any statistical test
- Can be combined with other correction methods
- Very conservative!

Eigenstrat (PCA)

- Corrects well for differences on population level
- Does not work well for closer relatedness
- Linear mixed models
 - Corrects well for most forms of relatedness.

イロト 不得下 イヨト イヨト 二日

Overview

Single marker association model with random effect term

Shortcomings

- Weak effects are not captured by single-marker analysis.
- Complex traits are controlled by more than a single SNP.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Overview

Single marker association model with random effect term

- Shortcomings
 - Weak effects are not captured by single-marker analysis.
 - Complex traits are controlled by more than a single SNP.

Overview

Single marker association model with random effect term

- Shortcomings
 - Weak effects are not captured by single-marker analysis.
 - Complex traits are controlled by more than a single SNP.

Multi locus models

Generalization to multiple genetic factors

28

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 17th 2012
Population structure correction

Multi locus models

Generalization to multiple genetic factors

• Challenge: $N \ll S$: explicit estimation of all β_s is not feasible.

28

October 17th 2012

Population structure correction

Multi locus models

Generalization to multiple genetic factors

$$\mathbf{y} = \sum_{\substack{s=1\\\text{genetic effect}}}^{S} \mathbf{x}_{s}\beta_{s} + \underbrace{\mathbf{u}}_{\text{random effect covariates}} + \underbrace{\boldsymbol{\epsilon}}_{\text{noise}}$$

- Challenge: $N \ll S$: explicit estimation of all β_s is not feasible.
- Solutions
 - Regularize β_s (Ridge regression, LASSO)

[Wu et al., 2011]

28

October 17th 2012

Population structure correction

Multi locus models

Generalization to multiple genetic factors

$$\mathbf{y} = \sum_{\substack{s=1\\\text{genetic effect}}}^{S} \mathbf{x}_{s}\beta_{s} + \underbrace{\mathbf{u}}_{\text{random effect covariates}} + \underbrace{\boldsymbol{\epsilon}}_{\text{noise}}$$

- Challenge: $N \ll S$: explicit estimation of all β_s is not feasible.
- Solutions
 - Regularize β_s (Ridge regression, LASSO)
 - Variance component modeling

[Wu et al., 2011]

28

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 17th 2012

Outline

Outline

Linear models for GWAS II

◆□ → < @ → < 差 → < 差 → < 差 → < 2 → < 0 < 0 </p> October 17^{th} 2012

Variance component models

Outline

Probability Theory

Population Structure

Population structure correction

Variance component models

Multi locus models Phenotype prediction

Linear models for GWAS II

イロト 不得 トイヨト イヨト 二日

October 17th 2012

Random effect models

For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

► For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \left| 0, \sigma_g^2 \right) \ p(\epsilon) = \mathcal{N}\left(\epsilon \left| 0, \sigma_e^2 \mathbf{I} \right)\right.$$

• Marginalize out the weights β_1, \ldots, β_S

$$p(\mathbf{y} \,|\, \mathbf{X}, \sigma_{\mathrm{g}}^2, \sigma_{\mathrm{e}}^2) =$$

Random effect models

► For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

 For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \, \big| \, 0, \sigma_g^2\right) \ p(\boldsymbol{\epsilon}) = \mathcal{N}\left(\boldsymbol{\epsilon} \, \big| \, \boldsymbol{0}, \sigma_e^2 \mathbf{I}\right)$$

• Marginalize out the weights β_1, \ldots, β_S

$$p(\mathbf{y} \,|\, \mathbf{X}, \sigma_{\mathbf{g}}^2, \sigma_{\mathbf{e}}^2) = \int_{oldsymbol{eta}} \mathcal{N}\left(\left| \mathbf{y} \,|\, \sum_{s=1}^{n} \mathbf{x}_s eta_s, \sigma_s^2 \mathbf{I}
ight)$$

Linear models for GWAS II

(日) (周) (日) (日) (日) (日)

October 17th 2012

Random effect models

For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right) \quad p(\boldsymbol{\epsilon}) = \mathcal{N}\left(\boldsymbol{\epsilon} \mid \boldsymbol{0}, \sigma_e^2 \mathbf{I}\right)$$

• Marginalize out the weights β_1, \ldots, β_S

31

Random effect models

For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

 For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right) \quad p(\boldsymbol{\epsilon}) = \mathcal{N}\left(\boldsymbol{\epsilon} \mid \boldsymbol{0}, \sigma_e^2 \mathbf{I}\right)$$

• Marginalize out the weights β_1, \ldots, β_S

$$p(\mathbf{y} \mid \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \int_{\boldsymbol{\beta}} \underbrace{\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \beta_{s}, \sigma_{e}^{2} \mathbf{I}\right)}_{\text{Data likelihood}} \underbrace{\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{g}^{2}\right)}_{\text{weight distribution}} d\boldsymbol{\beta}$$
$$= \mathcal{N}\left(\mathbf{y} \mid 0, \sigma_{g}^{2} \sum_{s=1}^{S} \mathbf{x}_{s} \mathbf{x}_{s}^{T} + \sigma_{e}^{2} \mathbf{I}\right)_{\text{(Correction)}} \underbrace{\mathbb{E}}_{\text{(Correction)}} \underbrace{\mathbb{E}}_{\text{(Correction)$$

Random effect models

For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

 For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right) \quad p(\boldsymbol{\epsilon}) = \mathcal{N}\left(\boldsymbol{\epsilon} \mid \boldsymbol{0}, \sigma_e^2 \mathbf{I}\right)$$

• Marginalize out the weights β_1, \ldots, β_S

$$p(\mathbf{y} \mid \mathbf{X}, \sigma_{\mathrm{g}}^{2}, \sigma_{\mathrm{e}}^{2}) = \int_{\boldsymbol{\beta}} \underbrace{\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \beta_{s}, \sigma_{\mathrm{e}}^{2} \mathbf{I}\right)}_{\text{Data likelihood}} \underbrace{\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2}\right)}_{\text{weight distribution}} \mathrm{d\boldsymbol{\beta}}$$
$$= \mathcal{N}\left(\mathbf{y} \mid 0, \sigma_{\mathrm{g}}^{2} \sum_{s=1}^{S} \mathbf{x}_{s} \mathbf{x}_{s}^{T} + \sigma_{\mathrm{e}}^{2} \mathbf{I}\right)_{\text{(d)} \rightarrow (d) \rightarrow (d)$$

Random effect models

For now, let's drop the random effect term

$$\mathbf{y} = \sum_{s=1}^{S} \mathbf{x}_s \beta_s + \boldsymbol{\epsilon}.$$

 For mathematical convenience, we choose a shared Gaussian distribution on the weights and Gaussian noise

$$p(\beta_1, \dots, \beta_S) = \prod_{s=1}^{S} \mathcal{N}\left(\beta_s \mid 0, \sigma_g^2\right) \quad p(\boldsymbol{\epsilon}) = \mathcal{N}\left(\boldsymbol{\epsilon} \mid \boldsymbol{0}, \sigma_e^2 \mathbf{I}\right)$$

• Marginalize out the weights β_1, \ldots, β_S

$$p(\mathbf{y} \mid \mathbf{X}, \sigma_{\mathrm{g}}^{2}, \sigma_{\mathrm{e}}^{2}) = \int_{\boldsymbol{\beta}} \underbrace{\mathcal{N}\left(\mathbf{y} \mid \sum_{s=1}^{S} \mathbf{x}_{s} \beta_{s}, \sigma_{\mathrm{e}}^{2} \mathbf{I}\right)}_{\text{Data likelihood}} \underbrace{\prod_{s=1}^{S} \mathcal{N}\left(\beta_{s} \mid 0, \sigma_{\mathrm{g}}^{2}\right)}_{\text{weight distribution}} \mathrm{d\boldsymbol{\beta}}$$
$$= \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{\mathrm{g}}^{2} \sum_{s=1}^{S} \mathbf{x}_{s} \mathbf{x}_{s}^{\mathrm{T}} + \sigma_{\mathrm{e}}^{2} \mathbf{I}\right)_{\text{constrained}} \underbrace{\mathbb{E}}_{\text{constrained}} \underbrace{\mathbb{E}}_{\text{co$$

C. Lippert

$$p(\mathbf{y} | \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \mathcal{N}\left(\mathbf{y} | \mathbf{0}, \sigma_{g}^{2} \sum_{\substack{s=1\\\mathbf{K}_{g}}}^{S} \mathbf{s}_{s} \mathbf{x}_{s}^{\mathrm{T}} + \sigma_{e}^{2} \mathbf{I}\right)$$
(3)

- Closely related to Kinship explaining population structure.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 17th 2012

32

$$p(\mathbf{y} | \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \mathcal{N}\left(\mathbf{y} | \mathbf{0}, \sigma_{g}^{2} \sum_{\substack{s=1\\\mathbf{K}_{g}}}^{S} \mathbf{s}_{s} \mathbf{x}_{s}^{\mathrm{T}} + \sigma_{e}^{2} \mathbf{I}\right)$$
(3)

- Closely related to Kinship explaining population structure.
- Inference can be done my maximum likelihood.
- The ratio of σ²_g and σ²_e defines the narrow sense heritability of the trait

イロト イポト イヨト イヨト

Linear models for GWAS II

October 17th 2012 32

$$p(\mathbf{y} | \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \mathcal{N}\left(\mathbf{y} | \mathbf{0}, \sigma_{g}^{2} \sum_{\substack{s=1\\\mathbf{K}_{g}}}^{S} \mathbf{s}_{s} \mathbf{x}_{s}^{\mathrm{T}} + \sigma_{e}^{2} \mathbf{I}\right)$$
(3)

- Closely related to Kinship explaining population structure.
- Inference can be done my maximum likelihood.
- ► The ratio of σ²_g and σ²_e defines the narrow sense heritability of the trait

イロト イポト イヨト イヨト

Linear models for GWAS II

October 17th 2012 32

$$p(\mathbf{y} | \mathbf{X}, \sigma_{g}^{2}, \sigma_{e}^{2}) = \mathcal{N}\left(\mathbf{y} | \mathbf{0}, \sigma_{g}^{2} \sum_{\substack{s=1\\\mathbf{K}_{g}}}^{S} \mathbf{s}_{s} \mathbf{x}_{s}^{\mathrm{T}} + \sigma_{e}^{2} \mathbf{I}\right)$$
(3)

- Closely related to Kinship explaining population structure.
- Inference can be done my maximum likelihood.
- The ratio of σ²_g and σ²_e defines the narrow sense heritability of the trait

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$h^2 = \frac{\sigma_{\rm g}^2}{\sigma_{\rm g}^2 + \sigma_{\rm e}^2}.$$

0

Heritability Heritability estimated on 107 *A. thaliana* phenotypes

Global genetic heritability

October 17th 2012 33

3. 3

A D > A B > A B > A

Heritability Heritability estimated on 107 A. thaliana phenotypes

 Estimate can be restricted to a genomic region such as a single chromosome, etc.

$$\mathcal{N}\!\left(\mathbf{y} \,|\, \mathbf{0}, \sigma_{\mathrm{g}}^2 \sum_{s \in \mathsf{Chrom}} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} \!+\! \sigma_{\mathrm{e}}^2 \mathbf{I}\right)$$

- Just fitting a particular region ignores the genome-wide context
- Variance dissection with region-based separation

$$p(\mathbf{y} \mid W) = \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \underbrace{\sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_w} + \sigma_g^2 \underbrace{\sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_g} + \sigma_{\mathrm{e}}^2 \mathbf{I})$$

- Explained variance components can be read off subject to suitable normalization of the covariances K_w and K_g.
- "Local" heritability

$$h^2(W) = \frac{\sigma_w^2}{\sigma_w^2 + \sigma_g^2 + \sigma_e^2}$$

October 17th 2012

35

C. Lippert

- Just fitting a particular region ignores the genome-wide context
- Variance dissection with region-based separation

$$p(\mathbf{y} \mid W) = \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \underbrace{\sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_w} + \sigma_g^2 \underbrace{\sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_g} + \sigma_{\mathrm{e}}^2 \mathbf{I})$$

$$h^2(W) = \frac{\sigma_w^2}{\sigma_w^2 + \sigma_g^2 + \sigma_e^2}$$

October 17th 2012

35

C. Lippert

- Just fitting a particular region ignores the genome-wide context
- Variance dissection with region-based separation

$$p(\mathbf{y} \mid W) = \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \underbrace{\sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_w} + \sigma_g^2 \underbrace{\sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_g} + \sigma_{\mathrm{e}}^2 \mathbf{I})$$

Explained variance components can be read off subject to suitable normalization of the covariances \mathbf{K}_w and \mathbf{K}_a .

$$h^2(W) = \frac{\sigma_w^2}{\sigma_w^2 + \sigma_g^2 + \sigma_e^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの October 17th 2012

35

C. Lippert

- Just fitting a particular region ignores the genome-wide context
- Variance dissection with region-based separation

$$p(\mathbf{y} \mid W) = \mathcal{N}(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \underbrace{\sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_w} + \sigma_g^2 \underbrace{\sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}}}_{\mathbf{K}_g} + \sigma_{\mathrm{e}}^2 \mathbf{I})$$

- Explained variance components can be read off subject to suitable normalization of the covariances K_w and K_g.
- "Local" heritability

$$h^2(W) = \frac{\sigma_w^2}{\sigma_w^2 + \sigma_g^2 + \sigma_e^2}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 35

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Window-based composite variance analysis

Window-based composite variance analysis Significance testing

- Analogously to fixed effect testing, the significance of a specific window can be tested.
- \blacktriangleright Likelihood-ratio statistics to score the relevance of a particular genomic region W

$$\mathsf{LOD}(W) = \frac{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \qquad \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}$$

 P-values can be obtained from permutation statistics or analytical approximation (variants of score tests or likelihood ratio tests).

[Wu et al., 2011, Listgarten et al., 2012]

C. Lippert

Linear models for GWAS II

イロト 不得下 イヨト イヨト 二日

October 17th 2012

Window-based composite variance analysis Significance testing

- Analogously to fixed effect testing, the significance of a specific window can be tested.
- ► Likelihood-ratio statistics to score the relevance of a particular genomic region W

$$\mathsf{LOD}(W) = \frac{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \qquad \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}$$

 P-values can be obtained from permutation statistics or analytical approximation (variants of score tests or likelihood ratio tests).

[Wu et al., 2011, Listgarten et al., 2012]

C. Lippert

Linear models for GWAS II

イロト 不得 トイヨト イヨト 二日

October 17th 2012

Window-based composite variance analysis Significance testing

- Analogously to fixed effect testing, the significance of a specific window can be tested.
- ► Likelihood-ratio statistics to score the relevance of a particular genomic region W

$$\mathsf{LOD}(W) = \frac{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_w^2 \sum_{s \in W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \qquad \sigma_g^2 \sum_{s \notin W} \mathbf{x}_s \mathbf{x}_s^{\mathrm{T}} + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)}$$

 P-values can be obtained from permutation statistics or analytical approximation (variants of score tests or likelihood ratio tests).

[Wu et al., 2011, Listgarten et al., 2012]

C. Lippert

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

 \blacktriangleright Linear model, accounting for a set of measured SNPs ${\bf X}$

$$p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\mathbf{y} \left| \sum_{s=1}^{S} \mathbf{x}_s \theta_s, \sigma^2 \mathbf{I} \right)\right)$$

- ▶ Prediction at unseen test input given max. likelihood weight: $p(y^* | \mathbf{x}^*, \hat{\theta}) = \mathcal{N}\left(y^* | \mathbf{x}^* \hat{\theta}, \sigma^2\right)$
- Marginal likelihood

$$p(\mathbf{y} \mid \mathbf{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{X}\boldsymbol{\theta}, \sigma^{2}\mathbf{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \sigma_{g}^{2}\mathbf{I}\right)$$
$$= \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \underbrace{\sigma_{g}^{2}\mathbf{X}\mathbf{X}^{\mathrm{T}}}_{\mathbf{K}} + \sigma^{2}\mathbf{I}\right)$$

Making predictions with linear mixed models?

Linear models for GWAS II

October 17th 2012

 \blacktriangleright Linear model, accounting for a set of measured SNPs ${\bf X}$

$$p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\mathbf{y} \left| \sum_{s=1}^{S} \mathbf{x}_s \theta_s, \sigma^2 \mathbf{I} \right)\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^{\star} | \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^{\star} | \mathbf{x}^{\star} \hat{\boldsymbol{\theta}}, \sigma^{2}\right)$
- Marginal likelihood

$$p(\mathbf{y} | \mathbf{X}, \sigma^{2}, \sigma_{g}^{2}) = \int_{\boldsymbol{\theta}} \mathcal{N} \left(\mathbf{y} | \mathbf{X} \boldsymbol{\theta}, \sigma^{2} \mathbf{I} \right) \mathcal{N} \left(\boldsymbol{\theta} | \mathbf{0}, \sigma_{g}^{2} \mathbf{I} \right)$$
$$= \mathcal{N} \left(\mathbf{y} \middle| \mathbf{0}, \underbrace{\sigma_{g}^{2} \mathbf{X} \mathbf{X}^{\mathrm{T}}}_{\mathbf{K}} + \sigma^{2} \mathbf{I} \right)$$

Making predictions with linear mixed models?

C. Lippert

Linear models for GWAS II

October 17th 2012 38

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 \blacktriangleright Linear model, accounting for a set of measured SNPs ${\bf X}$

$$p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\mathbf{y} \left| \sum_{s=1}^{S} \mathbf{x}_s \theta_s, \sigma^2 \mathbf{I} \right)\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^{\star} | \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^{\star} | \mathbf{x}^{\star} \hat{\boldsymbol{\theta}}, \sigma^{2}\right)$
- Marginal likelihood

$$p(\mathbf{y} \mid \mathbf{X}, \sigma^2, \sigma_g^2) = \int_{\boldsymbol{\theta}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \sigma_g^2 \mathbf{I}\right)$$
$$= \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \underbrace{\sigma_g^2 \mathbf{X} \mathbf{X}^{\mathrm{T}}}_{\mathbf{K}} + \sigma^2 \mathbf{I}\right)$$

Making predictions with linear mixed models?

C. Lippert

Linear models for GWAS II

October 17th 2012 38

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

 \blacktriangleright Linear model, accounting for a set of measured SNPs ${\bf X}$

$$p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}, \sigma^2) = \mathcal{N}\left(\mathbf{y} \left| \sum_{s=1}^{S} \mathbf{x}_s \theta_s, \sigma^2 \mathbf{I} \right)\right)$$

- ► Prediction at unseen test input given max. likelihood weight: $p(y^{\star} | \mathbf{x}^{\star}, \hat{\boldsymbol{\theta}}) = \mathcal{N}\left(y^{\star} | \mathbf{x}^{\star} \hat{\boldsymbol{\theta}}, \sigma^{2}\right)$
- Marginal likelihood

$$p(\mathbf{y} \mid \mathbf{X}, \sigma^2, \sigma_g^2) = \int_{\boldsymbol{\theta}} \mathcal{N}\left(\mathbf{y} \mid \mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}\right) \mathcal{N}\left(\boldsymbol{\theta} \mid \mathbf{0}, \sigma_g^2 \mathbf{I}\right)$$
$$= \mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \underbrace{\sigma_g^2 \mathbf{X} \mathbf{X}^{\mathrm{T}}}_{\mathbf{K}} + \sigma^2 \mathbf{I}\right)$$

Making predictions with linear mixed models?

C. Lippert

Linear models for GWAS II

October 17th 2012 38

The Gaussian distribution

 Linear mixed models are merely based on the good old multivariate Gaussian

$$\mathcal{N}\left(\mathbf{x} \mid \boldsymbol{\mu}, \mathbf{K}\right) = \frac{1}{\sqrt{|2\pi \mathbf{K}|}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{K}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

Covariance matrix or kernel matrix

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

A 2D Gaussian

Probability contour

Samples

Linear models for GWAS II

October 17th 2012 40

A 2D Gaussian

Probability contour

Samples

Linear models for GWAS II

October 17th 2012 40

Phenotype prediction

A 2D Gaussian Varying the covariance matrix

- 2 October 17th 2012 41

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A 2D Gaussian Inference

C. Lippert

Linear models for GWAS II

October 17th 2012 42

A 2D Gaussian Inference

C. Lippert

Linear models for GWAS II

A 2D Gaussian Inference

C. Lippert
Best linear unbiased prediction

► Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

- Use conditional probability distribution
- ▶ Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean μ^* and the variance Σ^* of y^* given y.

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

 $P(\mathbf{y}^{\star} \,|\, \mathbf{y}) = ?$

- Use conditional probability distribution
- Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean µ^{*} and the variance ∑^{*} of y^{*} given y.

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} \,|\, \mathbf{y}) = ?$$

Use conditional probability distribution

- ► Note, that the result is again a Gaussian distribution!
- As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean µ^{*} and the variance ∑^{*} of y^{*} given y.

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} | \mathbf{y}) = \frac{P(\mathbf{y}, \mathbf{y}^{\star})}{P(\mathbf{y})}$$

Use conditional probability distribution

- Note, that the result is again a Gaussian distribution!
- As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean µ^{*} and the variance ∑^{*} of y^{*} given y.

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} | \mathbf{y}) = \frac{P(\mathbf{y}, \mathbf{y}^{\star})}{P(\mathbf{y})} = \frac{\mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{0}, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}\right)}$$

Use conditional probability distribution

- Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean μ^{*} and the variance Σ^{*} of y^{*} given y.

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} | \mathbf{y}) = \frac{P(\mathbf{y}, \mathbf{y}^{\star})}{P(\mathbf{y})} = \frac{\mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{0}, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}\right)}$$

$$= \mathcal{N}\left(\mathbf{y}^{\star} \,|\, \boldsymbol{\mu}^{\star}, \boldsymbol{\Sigma}^{\star}\right)$$

- Use conditional probability distribution
- Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean μ^{*} and the variance Σ^{*} of y^{*} given y.

October 17th 2012

43

C. Lippert

Linear models for GWAS II

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} | \mathbf{y}) = \frac{P(\mathbf{y}, \mathbf{y}^{\star})}{P(\mathbf{y})} = \frac{\mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{0}, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}\right)}$$
$$= \mathcal{N}\left(\mathbf{y}^{\star} | \boldsymbol{\mu}^{\star}, \boldsymbol{\Sigma}^{\star}\right) \propto \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)$$

- Use conditional probability distribution
- Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean µ^{*} and the variance ∑^{*} of y^{*} given y.

Best linear unbiased prediction

Given the phenotype values y of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual y*.

$$P(\mathbf{y}^{\star} | \mathbf{y}) = \frac{P(\mathbf{y}, \mathbf{y}^{\star})}{P(\mathbf{y})} = \frac{\mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)}{\mathcal{N}\left(\mathbf{0}, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}\right)}$$
$$= \mathcal{N}\left(\mathbf{y}^{\star} | \boldsymbol{\mu}^{\star}, \boldsymbol{\Sigma}^{\star}\right) \propto \mathcal{N}\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\star} \end{bmatrix} | \mathbf{0}, \sigma_g^2 \begin{bmatrix} \mathbf{K} & \mathbf{K}_{:,\star} \\ \mathbf{K}_{:,\star}^{\mathrm{T}} & \mathbf{K}^{\star,\star} \end{bmatrix} \sigma_e^2 \mathbf{I}\right)$$

- Use conditional probability distribution
- Note, that the result is again a Gaussian distribution!
- ► As a Gaussian distribution is always normalized, we can drop any constant terms, that do not contain y^{*}.
- Completing the square identifies the mean μ^* and the variance Σ^* of \mathbf{y}^* given \mathbf{y} .

C. Lippert

Gaussian conditioning in 2D

$$p(y_{2} | y_{1}, \mathbf{K}) = \frac{p(y_{1}, y_{2} | \mathbf{K})}{p(y_{1} | \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_{1}, y_{2}] \mathbf{K}^{-1} \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix}\right\}$$

$$= \exp\left\{-\frac{1}{2}\left[y_{1}^{2} \mathbf{K}_{1,1}^{-1} + y_{2}^{2} \mathbf{K}_{2,2}^{-1} + 2y_{1} \mathbf{K}_{1,2}^{-1} y_{2}\right]\right\}$$

$$= \exp\left\{-\frac{1}{2}\left[y_{2}^{2} \mathbf{K}_{2,2}^{-1} + 2y_{2} \mathbf{K}_{1,2}^{-1} y_{1} + C\right]\right\}$$

$$= Z \exp\left\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \left[y_{2}^{2} + 2y_{2} \frac{\mathbf{K}_{1,2}^{-1} y_{1}}{\mathbf{K}_{2,2}^{-1}}\right]\right\}$$

$$= Z \exp\left\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \left[y_{2}^{2} + 2y_{2} \frac{\mathbf{K}_{1,2}^{-1} y_{1}}{\mathbf{K}_{2,2}^{-1}} + \frac{\mathbf{K}_{1,2}^{-1} y_{1}}{\mathbf{K}_{2,2}^{-1}}\right] + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_{1}}{\mathbf{K}_{2,2}^{-1}}\right\}$$

$$= Z' \exp\left\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \left[y_{2} + \frac{\mathbf{K}_{1,2}^{-1} y_{1}}{\mathbf{K}_{2,2}^{-1}}\right]^{2}\right\} \propto \mathcal{N}\left(y_{2} | \mu, \Sigma\right)$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

Gaussian conditioning in 2D

$$p(y_{2} | y_{1}, \mathbf{K}) = \frac{p(y_{1}, y_{2} | \mathbf{K})}{p(y_{1} | \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_{1}, y_{2}]\mathbf{K}^{-1}\begin{bmatrix} y_{1} \\ y_{2}\end{bmatrix}\right\}$$

$$= \exp\{-\frac{1}{2}\left[y_{1}^{2}\mathbf{K}_{1,1}^{-1} + y_{2}^{2}\mathbf{K}_{2,2}^{-1} + 2y_{1}\mathbf{K}_{1,2}^{-1}y_{2}\right]\}$$

$$= \exp\{-\frac{1}{2}\left[y_{2}^{2}\mathbf{K}_{2,2}^{-1} + 2y_{2}\mathbf{K}_{1,2}^{-1}y_{1} + C\right]\}$$

$$= Z\exp\{-\frac{1}{2}\mathbf{K}_{2,2}^{-1}\left[y_{2}^{2} + 2y_{2}\frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}}\right]\}$$

$$= Z\exp\{-\frac{1}{2}\mathbf{K}_{2,2}^{-1}\left[y_{2}^{2} + 2y_{2}\frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}} + \frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}}\right] + \frac{1}{2}\mathbf{K}_{2,2}\frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}}^{2}\}$$

$$= Z\exp\{-\frac{1}{2}\mathbf{K}_{2,2}^{-1}\left[y_{2} + \frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}} + \frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}}\right] + \frac{1}{2}\mathbf{K}_{2,2}\frac{\mathbf{K}_{1,2}^{-1}y_{1}}{\mathbf{K}_{2,2}^{-1}}^{2}\}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Gaussian conditioning in 2D

$$\begin{split} p(y_2 \mid y_1, \mathbf{K}) &= \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_1, y_2] \,\mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_1^2 \mathbf{K}_{1,1}^{-1} + y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_1 \mathbf{K}_{1,2}^{-1} y_2 \end{bmatrix}\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_2 \mathbf{K}_{1,2}^{-1} y_1 + C \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} + \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix} + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

Gaussian conditioning in 2D

$$\begin{split} p(y_2 \mid y_1, \mathbf{K}) &= \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_1, y_2] \,\mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_1^2 \mathbf{K}_{1,1}^{-1} + y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_1 \mathbf{K}_{1,2}^{-1} y_2 \end{bmatrix}\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_2 \mathbf{K}_{1,2}^{-1} y_1 + C \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix} + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z' \exp\{-\frac{1}{2} \underbrace{\mathbf{K}_{2,2}^{-1}}_{\Sigma} \begin{bmatrix} y_2 + \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}^2\} \propto \mathcal{N}(y_2 \mid \mu, \Sigma) \end{split}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

Gaussian conditioning in 2D

$$\begin{split} p(y_2 \mid y_1, \mathbf{K}) &= \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_1, y_2] \,\mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\} \\ &= \exp\{-\frac{1}{2}\left[y_1^2 \mathbf{K}_{1,1}^{-1} + y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_1 \mathbf{K}_{1,2}^{-1} y_2\right]\} \\ &= \exp\{-\frac{1}{2}\left[y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_2 \mathbf{K}_{1,2}^{-1} y_1 + C\right]\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix} + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}}^2\} \\ &= Z' \exp\{-\frac{1}{2} \underbrace{\mathbf{K}_{2,2}^{-1}}_{\Sigma} \begin{bmatrix} y_2 + \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}^2\} \propto \mathcal{N}(y_2 \mid \mu, \Sigma) \end{split}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

Gaussian conditioning in 2D

$$\begin{split} p(y_2 \mid y_1, \mathbf{K}) &= \frac{p(y_1, y_2 \mid \mathbf{K})}{p(y_1 \mid \mathbf{K})} \propto \exp\left\{-\frac{1}{2}[y_1, y_2] \,\mathbf{K}^{-1} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_1^2 \mathbf{K}_{1,1}^{-1} + y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_1 \mathbf{K}_{1,2}^{-1} y_2 \end{bmatrix}\} \\ &= \exp\{-\frac{1}{2} \begin{bmatrix} y_2^2 \mathbf{K}_{2,2}^{-1} + 2y_2 \mathbf{K}_{1,2}^{-1} y_1 + C \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2^2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}\} \\ &= Z \exp\{-\frac{1}{2} \mathbf{K}_{2,2}^{-1} \begin{bmatrix} y_2 + 2y_2 \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix} + \frac{1}{2} \mathbf{K}_{2,2}^{-1} \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}}^2\} \\ &= Z' \exp\{-\frac{1}{2} \underbrace{\mathbf{K}_{2,2}^{-1}}_{\Sigma} \begin{bmatrix} y_2 + \frac{\mathbf{K}_{1,2}^{-1} y_1}{\mathbf{K}_{2,2}^{-1}} \end{bmatrix}^2\} \propto \mathcal{N}(y_2 \mid \mu, \Sigma) \end{split}$$

C. Lippert

Linear models for GWAS II

October 17th 2012 44

Best linear unbiased prediction

- Given the phenotype values of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual.
- ► $P(\mathbf{y}^* | \mathbf{y}) = \mathcal{N} \left(\mathbf{y}^* | \boldsymbol{\mu}^*, \sigma_g^2 \mathbf{V}_g^* + \sigma_e^2 \mathbf{I} \right)$ ► Predictive mean: $\boldsymbol{\mu}^* = \underbrace{\sigma_g^2 \mathbf{K}_g^{*,:} \left(\sigma_g^2 \mathbf{K}_g + \sigma_e^2 \mathbf{I} \right)^{-1} \mathbf{y}}_{\text{BLUP}}$ ► Predictive Variance: $\mathbf{V}^* - \mathbf{K}^{*,*} - \sigma^2 \mathbf{K}^{*,:} \left(\sigma^2 \mathbf{K}_g + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{K}^{:,*}$

Best linear unbiased prediction

Given the phenotype values of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual.

$$\blacktriangleright P(\mathbf{y}^{\star} | \mathbf{y}) = \mathcal{N}\left(\mathbf{y}^{\star} | \boldsymbol{\mu}^{\star}, \sigma_{g}^{2} \mathbf{V}_{g}^{\star} + \sigma_{e}^{2} \mathbf{I}\right)$$

- ► Predictive mean: $\mu^* = \sigma_g^2 \mathbf{K}_g^{\star,:} \left(\sigma_g^2 \mathbf{K}_g + \sigma_e^2 \mathbf{I}\right)^{-1} \mathbf{y}$
- $\blacktriangleright \text{ Predictive Variance: } \mathbf{V}_g^{\star} = \mathbf{K}_g^{\star,\star} \sigma_{\rm g}^2 \mathbf{K}_g^{\star,:} \left(\sigma_{\rm g}^2 \mathbf{K}_g + \sigma_{\rm e}^2 \mathbf{I} \right)^{-1} \mathbf{K}_g^{:,\star}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQの

October 17th 2012

Best linear unbiased prediction

Given the phenotype values of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual.

$$\blacktriangleright P(\mathbf{y}^{\star} | \mathbf{y}) = \mathcal{N}\left(\mathbf{y}^{\star} | \boldsymbol{\mu}^{\star}, \sigma_{g}^{2} \mathbf{V}_{g}^{\star} + \sigma_{e}^{2} \mathbf{I}\right)$$

► Predictive mean:
$$\mu^{\star} = \underbrace{\sigma_{g}^{2} \mathbf{K}_{g}^{\star,:} \left(\sigma_{g}^{2} \mathbf{K}_{g} + \sigma_{e}^{2} \mathbf{I}\right)^{-1} \mathbf{y}}_{\mathsf{BLUP}}$$

► Predictive Variance: $\mathbf{V}_g^{\star} = \mathbf{K}_g^{\star,\star} - \sigma_{\mathrm{g}}^2 \mathbf{K}_g^{\star,:} \left(\sigma_{\mathrm{g}}^2 \mathbf{K}_g + \sigma_{\mathrm{e}}^2 \mathbf{I}\right)^{-1} \mathbf{K}_g^{:,\star}$

Best linear unbiased prediction

Given the phenotype values of a set of individuals and the genetic relatedness, we can predict the genetic component of the phenotype of a new individual.

►
$$P(\mathbf{y}^* | \mathbf{y}) = \mathcal{N} \left(\mathbf{y}^* | \boldsymbol{\mu}^*, \sigma_g^2 \mathbf{V}_g^* + \sigma_e^2 \mathbf{I} \right)$$

► Predictive mean: $\boldsymbol{\mu}^* = \underbrace{\sigma_g^2 \mathbf{K}_g^{\star,:} \left(\sigma_g^2 \mathbf{K}_g + \sigma_e^2 \mathbf{I} \right)^{-1} \mathbf{y}}_{\text{BLUP}}$
► Predictive Variance: $\mathbf{V}_g^* = \mathbf{K}_g^{\star,\star} - \sigma_g^2 \mathbf{K}_g^{\star,:} \left(\sigma_g^2 \mathbf{K}_g + \sigma_e^2 \mathbf{I} \right)^{-1} \mathbf{K}_g^{:,\star}$

Basic probability theory

Linear mixed models

- Population structure correction
- Parameter estimation
- Variance component modeling
- Phenotype prediction

Basic probability theory

Linear mixed models

- Population structure correction
- Parameter estimation
- Variance component modeling
- Phenotype prediction

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

- Basic probability theory
- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

Acknowledgements

Joint course material O. Stegle

FaST Imm

J. Listgarten, D. Heckerman

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

References I

- P. Burton, D. Clayton, L. Cardon, N. Craddock, P. Deloukas, A. Duncanson, D. Kwiatkowski, M. McCarthy, W. Ouwehand, N. Samani, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*, 447(7145):661–678, 2007.
- B. Devlin and K. Roeder. Genomic control for association studies. *Biometrics*, 55(4):997–1004, 1999.
- H. M. Kang, N. A. Zaitlen, C. M. Wade, A. Kirby, D. Heckerman, M. J. Daly, and E. Eskin. Efficient control of population structure in model organism association mapping. *Genetics*, 107, 2008.
- C. Lippert, J. Listgarten, Y. Liu, C. Kadie, R. Davidson, and D. Heckerman. Fast linear mixed models for genome-wide association studies. *Nature Methods*, 8(10):838;835, 10 2011. doi: 10.1038/nmeth.1681.
- J. Listgarten, C. Lippert, and D. Heckerman. An efficient group test for genetic markers that handles confounding. *arXiv preprint arXiv:1205.0793*, 2012.
- J. Novembre, T. Johnson, K. Bryc, Z. Kutalik, A. R. Boyko, A. Auton, A. Indap, K. S. King, S. Bergmann, M. R. Nelson, M. Stephens, and C. D. Bustamante. Genes mirror geography within europe. *Nature*, 456(7218):98–101, Nov. 2008.
- N. Patterson, A. L. Price, and D. Reich. Population structure and eigenanalysis. *PLoS Genetics*, 2(12):e190+, December 2006.

C. Lippert

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

References II

- A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich. Principal components analysis corrects for stratification in genome-wide association studies. Nature genetics, 38(8):904-909, August 2006.
- M. Wu, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. Rare-variant association testing for sequencing data with the sequence kernel association test. The American Journal of Human Genetics. 2011.

October 17th 2012