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Why QTL mapping

Introduction

Genotype to phenotype mapping

Given:
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Introduction Why QTL mapping

Genotype to phenotype mapping

Given:

> Genotype for multiple
individuals

» Single nucleotide
polymorphisms (SNPs),
microsatelite markers
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Introduction

Genotype to phenotype mapping

Given:

> Genotype for multiple
individuals

» Single nucleotide
polymorphisms (SNPs),
microsatelite markers

» Quantitative traits
(phenotypes) for the same
individuals

> disease, height,
gene-expression, . ..

C. Lippert

Why QTL mapping

L Y

HHHH

Linear models for GWAS |

% &€

HHHHH

S 2@

HHHH

HHH

1

50

[

B3 8

H
HHHH
H

H
HHH
H

October 15

X )

HHHH

HHH

th

1

60

2012

5



Introduction Why QTL mapping

Genotype to phenotype mapping

Given:

> Genotype for multiple
individuals

» Single nucleotide

ATGNNGAATCTG

polymorphisms (SNPS), AALGUGAAATGT
. . TAT TACGALG
microsatelite markers aneTdTTTeCTA

» Quantitative traits
(phenotypes) for the same

individuals @

> disease, height,
gene-expression, . ..

Goal:
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Introduction Why QTL mapping

Genotype to phenotype mapping

Given:

> Genotype for multiple
individuals

» Single nucleotide
. ATG GAATCTG
polymorphlsms (SNPS), AALGUGAAATGT
microsatelite markers aneTdTTTeCTA

» Quantitative traits
(phenotypes) for the same .
individuals @

> disease, height,
gene-expression, . ..

Goal:

» Identify causal loci that explain phenotypic differences.
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Introduction Why QTL mapping

Use of GWAs in plant systems

» Basic biology

» Understand the makeup
of molecular pathways

» Dissect the genetic
component of natural
variation.
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Introduction Why QTL mapping

Use of GWAs in plant systems

» Basic biology

» Understand the makeup
of molecular pathways

» Dissect the genetic
component of natural
variation.

» Genotype-environment
interactions
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Introduction Why QTL mapping

Use of GWAs in plant systems

» Basic biology

» Understand the makeup
of molecular pathways

» Dissect the genetic
component of natural
variation.

» Genotype-environment
interactions

> Breeding

» Mine for markers causal
for phenotype to assist in
breeding decisions.

» Maximization of yield,
pathogene resistance, etc.
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Introduction Why QTL mapping

Personalized medicine & health

» Adapting treatment to the patients
genetic make-up.
» Targeting patients who can benefit.
» Appropriate dosage of a drug by using

genetic variants to understand drug
ATGTTGAATCTE

metabolism (e.g., anti-depressants, BAAGTGABATGT
beta blockers, opioid analgesics). TATDATACGALG

X . . AAGTATTTGCTA

» Disease subcategorization GacdcassACT

CTTCATCATAAC
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Introduction Why QTL mapping

Personalized medicine & health

» Adapting treatment to the patients
genetic make-up.
» Targeting patients who can benefit.
» Appropriate dosage of a drug by using

genetic variants to understand drug
ATGTTGAATCTE

metabolism (e.g., anti-depressants, BAAGTGABATGT

beta blockers, opioid analgesics). TATDATACGALG

X . . AAGTATTTGCTA

» Disease subcategorization CACOTCAAAACE

» Risk prediction CTIGHTCATARS

» Known causal variants help to identify
individuals with higher risk to develop
a particular disease.

> Improved monitoring of high-risk
groups.
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Introduction Why QTL mapping

Personalized medicine & health
Publication boost
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Introduction Why QTL mapping

Personalized medicine & health
Publication boost

Published Genome-Wide Associations through 06/2011,

- g 1,449 published GWA at p<5x10° for 237 traits 2011 2nd quarter

NHGRI GWA Catalog
www.genome.gov/GWAStudies
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Introduction Terminology & background

Some definitions

» Genotype denotes the genetic state
of an individual.

» Denoted by x" for individual n.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT SNPs
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
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» Phenotype denotes the state of a
trait of an individual.

» Denoted by y" for individual n.
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Introduction Terminology & background

Some definitions

» Genotype denotes the genetic state
of an individual.

» Denoted by x" for individual n.

» Phenotype denotes the state of a
trait of an individual.

» Denoted by y" for individual n.

> A locus is a position or limited region
in the genome.

» Denoted by x; for locus (or
SNP) s.
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ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
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Introduction Terminology & background

Some definitions

» Genotype denotes the genetic state
of an individual.

» Denoted by x" for individual n.

SNPs.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT

> PhenOtype denotes the state of a ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
. e g . ATGACCTGCAACTGGGGGACTGACGTGEAACGGT

trait of an individual. ATGACCTGAAACTGGGGGATTGACGTGGAACGGT

ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

A/C

» Denoted by y" for individual n.

> A locus is a position or limited region
in the genome.

» Denoted by x; for locus (or
SNP) s.

> An allele is the genetic state of a
locus.

th
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Introduction Terminology & background

More definitions

> An organism/cell is haploid if it
only has one chromosome set or

identical chromosome sets. ?(_ ?) ,)L )( !L

> e.g. A. thaliana, sperm cells

inbred lab i { “
or Inbred lab strains « 2‘ (( )] “ ?\, “
JU R ¥y oon
it 1 " it ’l

image source: Wikipedia
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Introduction Terminology & background

More definitions

> An organism/cell is haploid if it
only has one chromosome set or

identical chromosome sets. ?(.. ?) )L )( !L

> e.g. A. thaliana, sperm cells
or inbred lab strains

(G S (G T
> An organism/cell is diploid if it has

two separately inherited

homologous chromosomes. Jo - h W

> e.g. human
”"
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C. Lippert Linear models for GWAS | October 15" 2012

)1l

10



Introduction Terminology & background

More definitions

> An organism/cell is haploid if it
only has one chromosome set or

identical chromosome sets. ?(__ ?) )L )( ZL

> e.g. A. thaliana, sperm cells
or inbred lab strains TR \ RY
(O R (G I T
> An organism/cell is diploid if it has
two separately inherited
homologous chromosomes. J - h W

> e.g. human
”"

> An organism/cell is polyploid if it
has more than two homologous

image source: Wikipedia
chromosomes.

> e.g. sugar cane is hexaploid.
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Introduction Terminology & background

Even more definitions

» Haplotype denotes an individual’s
state of a single set of
chromosomes (paternal or
maternal).

> A locus is homozygous if the
paternal and maternal haplotypes
are identical.
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ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

A/A
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Introduction Terminology & background

Even more definitions

» Haplotype denotes an individual’s
state of a single set of
chromosomes (paternal or

maternal).
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
» A locus is homozygous if the ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
paternal and maternal haplotypes A/C
are identical.

> A locus is heterozygous if it differs
between paternal and maternal
haplotypes.
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Introduction Terminology & background

Statistical association

Association is any relationship
between two measured quantities
that renders them statistically

dependent. @, _____ @

[Upton and Cook, 2002]
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Statistical association

Association is any relationship
between two measured quantities
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Statistical association

Association is any relationship
between two measured quantities
that renders them statistically
dependent.

» Direct association

[Upton and Cook, 2002]
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Statistical association

Association is any relationship
between two measured quantities
that renders them statistically
dependent.

» Direct association

» Indirect association

[Upton and Cook, 2002]
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Introduction Terminology & background

Statistical association

Association is any relationship
between two measured quantities
that renders them statistically
dependent.

» Direct association

» Indirect association

» Can be beneficial
e.g.. Linkage

[Upton and Cook, 2002]
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Introduction Terminology & background

Statistical association

Association is any relationship
between two measured quantities
that renders them statistically
dependent.

» Direct association

» Indirect association

» Can be beneficial
e.g.. Linkage
» Can be harmful
e.g.: Population structure

[Upton and Cook, 2002]
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Introduction Terminology & background

Result
Example GWAS on A. thaliana

» Phenotype: Flowering time
at 10 degrees

[Atwell et al., 2010]
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Introduction Terminology & background

Result
Example GWAS on A. thaliana

» Phenotype: Flowering time
at 10 degrees

» Test every SNP in the
genome for association with
floweringtime

[Atwell et al., 2010]
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Introduction Terminology & background

Result
Example GWAS on A. thaliana

» Phenotype: Flowering time
at 10 degrees ;

» Test every SNP in the ’
genome for association with
floweringtime

» Position vs. Logl0(P-value)
(Manhattan plot)

8 2
Genonmic position x10°

[Atwell et al., 2010]

C. Lippert Linear models for GWAS | October 15" 2012 13



Introduction Terminology & background

Genetic designs

» Natural population
» Global sampling of plants,
human or animals. Avabidopsis disrbution
» Samples may exhibit - Accession collected
varying degrees of
relatedness.
» Typically diploid.

LTI
==
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Introduction

Genetic designs

» Natural population

» Global sampling of plants,
human or animals.

» Samples may exhibit
varying degrees of
relatedness.

» Typically diploid.

> Inbred F2 crosses

» Mapping of the differences
of founder strains

» Plant- and animal systems

> No relatedness

» Typically haploid.

Terminology & background
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Introduction
Genetic designs

» Natural population

» Global sampling of plants,
human or animals.

» Samples may exhibit
varying degrees of
relatedness.

» Typically diploid.

> Inbred F2 crosses

» Mapping of the differences
of founder strains
» Plant- and animal systems
» No relatedness
» Typically haploid.
» Multi-parent crosses
> Increased genetic diversity
» No relatedness
» Typically haploid.

|

{
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Introduction Terminology & background

Genetic designs
Genotype encoding

A simple encoding scheme,
ignoring dominance:

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

th
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Introduction Terminology & background

Genetic designs
Genotype encoding

A simple encoding scheme,
ignoring dominance:

> A locus is heterozygous if it
differs between paternal and
maternal haplotypes.

> heterozygous allele usually

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
enCOded as 1 ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

A/C
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Introduction

Genetic designs
Genotype encoding

A simple encoding scheme,
ignoring dominance:

> A locus is heterozygous if it
differs between paternal and
maternal haplotypes.

> heterozygous allele usually
encoded as 1

» A locus is homozygous if it
matches between paternal
and maternal haplotypes.

» homozygous major allele
usually encoded as 0

» homozygous minor allele
usually encoded as 2

C. Lippert

Linear models for GWAS |

Terminology & background

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

A/A
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Introduction

Linkage Disequilibrium
Physical linkage

» Recombination causes linkage
between loci.

C. Lippert
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Introduction

Linkage Disequilibrium
Physical linkage

» Recombination causes linkage
between loci.

> Linkage is not uniform along
the chromosome.
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Introduction

Linkage Disequilibrium
Physical linkage

» Recombination causes linkage
between loci.

> Linkage is not uniform along
the chromosome.

» Recombination hotspots on the
chromosome lead to conserved
haplotype blocks in strong
linkage.

C. Lippert
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Introduction Terminology & background
Linkage Disequilibrium
Physical linkage

» Recombination causes linkage
between loci. -~ ~

> Linkage is not uniform along
the chromosome.

» Recombination hotspots on the .
chromosome lead to conserved
haplotype blocks in strong
linkage.

uol1e|nga.
-~
(o)

> Linkage can be used to chose 0
tag-SNPs to cover all linked
regions.

» Tradeoff between
resolution and genotyping
cost.
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Introduction Terminology & background

Phenotypes

» Binary
» case, control > e.g. disease status

th
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Phenotypes

» Binary
» case, control

» Continuous

C. Lippert
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> e.g. disease status
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Introduction Terminology & background

Phenotypes
> Binary
» case, control > e.g. disease status
» Continuous > height
» Gaussian

th
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Phenotypes

» Binary
» case, control
» Continuous

» Gaussian
» Non-Gaussian

C. Lippert

Introduction Terminology & background

> e.g. disease status
> height

» survival time, cell counts
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Introduction Terminology & background

Phenotypes
> Binary
» case, control > e.g. disease status
» Continuous > height
» Gaussian » survival time, cell counts

» Non-Gaussian .
> gene-expression

» Multivariate
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Introduction Terminology & background

Phenotypes
> Binary
» case, control > e.g. disease status
» Continuous > height
» Gaussian » survival time, cell counts

» Non-Gaussian
Multivariate
Other

v
v

Images, videos

v
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Introduction Terminology & background

Preprocessing
Genotype

. . . 99.6
» Imputation of missing values
994 =
» Hidden Markov Models 902 = e
g L [
and related approaches 8 900 —
> Beagle, IMPUTE 5
B 988 Bur-0
Y — o
986 — Kro-0
Ler-1
984

10 20 30 40 50 60 70
Percentage of missing genotypes

80 90

Genotype imputation accuracy from
SNP-chip to 80Genomes reference

panel [Cao et al., 2011].

[Browning and Browning, 2009]

C. Lippert Linear models for GWAS | October 15"

2012 18



Introduction Terminology & background

Preprocessing
Genotype

» Imputation of missing values

ACDg
—_—

cbserved
impued

» Hidden Markov Models |
and related approaches
> Beagle, IMPUTE

B30 EES GE

8%

Genotype imputation accuracy from
SNP-chip to 80Genomes reference

panel [Cao et al., 2011].

[Browning and Browning, 2009]
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Introduction

Preprocessing
Genotype

» Imputation of missing values

» Hidden Markov Models
and related approaches
> Beagle, IMPUTE
» In GWAS based on full
sequencing data, some
alleles may be rare or even
private.
» Model designs need to be

adapted
» Rare variances filtered out

C. Lippert

Linear models for GWAS |

Terminology & background

25

20

Density

90 0.1 0.2 03 0.4 0.5

MAF

Minor allele frequency from 160 A. thaliana lines; 2.3

million genome-wide SNPs from NGS sequencing

[Browning and Browning, 2009]
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Introduction Terminology & background

Preprocessing
Phenotype

» Most parametric models are
based on Gaussianity
assumptions

[Spitzer, 1982]

th

C. Lippert Linear models for GWAS | October 157" 2012 19



Introduction Terminology & background

Preprocessing
Phenotype

» Most parametric models are
based on Gaussianity
assumptions

» Phenotype residuals are
often non-Gaussian

2 3

Raw FT

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell

et al., 2010].

[Spitzer, 1982]
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Introduction Terminology & background

Preprocessing
Phenotype

» Most parametric models are
based on Gaussianity
assumptions

» Phenotype residuals are
often non-Gaussian

» Phenotype transformation
on suitable scale

2 3

> Use of prior knowledge Raw FT

> Growth rates,
generation doubling
time, etc. et al., 2010].

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell

» Variance stabilization

[Spitzer, 1982]
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Introduction Terminology & background

Preprocessing
Phenotype

» Most parametric models are
based on Gaussianity
assumptions

» Phenotype residuals are
often non-Gaussian

» Phenotype transformation
on suitable scale

BZ(!—\?—HP—U’)I)U 05 1.0 1.5 2.0

> Use of prior knowledge Raw FT Box Cox FT

2 3

> Growth rates,
generation doubling
time, etc. et al., 2010].

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell

» Variance stabilization
» Box-Cox transformation

[Spitzer, 1982]
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Introduction Terminology & background

Linkage Disequilibrium

Gametic Phase Disequilibrium

» Association between two
loci.

" -
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Introduction

Linkage Disequilibrium

Gametic Phase Disequilibrium

» Association between two
loci.

» Deviation from random
co-inheritance between loci.

C. Lippert
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Introduction Terminology & background

Linkage Disequilibrium

Gametic Phase Disequilibrium

» Association between two

loci.
» Deviation from random -‘“ -
co-inheritance between loci.
- W @ e
» LD can be caused by . i S
. . . 5 P 5 @D
recombination, population — -
structure, epistasis — o @
— -
-
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Introduction Terminology & background

Linkage Disequilibrium

Gametic Phase Disequilibrium

» Association between two
loci.

» Deviation from random
co-inheritance between loci.

Al-
» LD can be caused by . i S
. . . 5 B
recombination, population — -
structure, epistasis — o @
— - @
» Measures of LD between
. B S -
two loci 1 and x5 are D
and 2.
| 2o =A> @3=5By |
z1 = A1 faa faB fa.
z1 = B; fBA fBB fB.
fa f.B
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Introduction Terminology & background

Linkage Disequilibrium

Gametic Phase Disequilibrium

» Association between two
loci.

» Deviation from random
co-inheritance between loci.

Al-
» LD can be caused by . i S
. . 5 B
recombination, population — -
structure, epistasis — o @
— - @
» Measures of LD between
. B -
two loci 1 and x5 are D
and 2.
» D= faa—fafa. | @ =As @p=05; |
z1 = A1 faa faB fa.
z1 = B; fBaA fBB fB.
fa f.B
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Introduction

Linkage Disequilibrium

Gametic Phase Disequilibrium

>

C.

Association between two
loci.

Deviation from random

co-inheritance between loci.

Terminology & background

Al-
LD can be caused by . i S
. . 5 B
recombination, population — -
structure, epistasis — o @
— -
Measures of LD between
- - @&
two loci 1 and x5 are D
and 2.
» D= faa—fafa. Il =2 =4y w2=D5o |
DQ ’ ] = Ay faa faB fa.
> 2= z1 = B ffBA ffBB fB.
faafaBfeafBB A B
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Linkage Disequilibrium

Gametic Phase Disequilibrium

Introduction Terminology & background

» Association between two
loci.
» Deviation from random -‘“ -
co-inheritance between loci. P
» LD can be caused by - - . i S :
- . 5 @ =
recombination, population — -
structure, epistasis —- @
» Measures of LD between - @&
two loci 1 and x4 are D - -
and 2.
» D= fan—fafa. | w2 =4y =2=5; |
D2 z1 = Ay faa fab fa.
> 7,2 _ z1 = B, fBaA /BB fB.
faafafBafes fa In
» D #0and r? #£0 are
indicators of LD.
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Introduction Methodological challenges

Challenges we are going to address
Multiple hypothesis testing

» In GWAS, the number of
statistical tests commonly is on
the order of 10°,

-Log10 PV

0.6 08
Genomic position 1e8
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Multiple hypothesis testing

» In GWAS, the number of
statistical tests commonly is on
the order of 10°,

» At significane level of 0.01 we o
would expect 10,000 false .
positives g4

0.6 08
Genomic position 1e8
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Introduction Methodological challenges

Challenges we are going to address

Multiple hypothesis testing

» In GWAS, the number of

statistical tests commonly is on

the order of 106.

» At significane level of 0.01 we o

would expect 10,000 false
positives

» Thus, individual P-values
< 0.01 are not significant
anymore.
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Introduction Methodological challenges

Challenges we are going to address
Multiple hypothesis testing

» In GWAS, the number of
statistical tests commonly is on
the order of 10°,

» At significane level of 0.01 we o
would expect 10,000 false .
positives g4

» Thus, individual P-values i
< 0.01 are not significant 02
anymore.

0.6
Genomic position

» Correction for multiple
hypothesis testing is critical!
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Introduction Methodological challenges

Challenges we are going to address

Population structure

» Confounding structure leads
to false positives.
» Population structure

C. Lippert

T T T
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs.

population structure

X

X
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Introduction Methodological challenges

Challenges we are going to address

Population structure

population structure

» Confoundin g structure leads RGACCTCRAACTGCECEACTGACGTGGAACGET]

ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

to false pOSIt IvVes. ATGACCTGEAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT

H ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
B Po p u | a t on St ru Ct ure ATGACCTGCAACTGGGGGATTGACGTGCAACGGT.

c
c

.NN( P’ :”’2'.)
T
T /
X

phenotype
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Introduction Methodological challenges

Challenges we are going to address

Population structure

population structure

SNPs

» Confounding structure leads : : :
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT]

to fa | se p Osl t Ives. ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

» Po pu lation structure ATGACCTGAAAC TGGGGGAT TGACGTGGAACGGT

. ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
» Family structure

family structure

ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

c
c

.NN( " “?.)
T
T
X

phenotype
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Introduction Methodological challenges

Challenges we are going to address

Population structure

» Confounding structure leads .
T T T SNPs population structure
T+ ATGACCTGAAACTGGGGGACTGACGTGGAACGGT] family structure
to fa |Se pOSIt I Ves . ATGACCTGCAACTGGGGGACTGACGTGCAACGGT (vypn( relatedness
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT

> PopL.JIatlon structure ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
» Fami |y structure ATGACCTGCAACTGGGGGA:GACGTGCAACGGT
» Cryptic relatedness
B8
phenotype X I
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Introduction Methodological challenges

Challenges we are going to address

Population structure

» Confounding structure leads
to false positives.
» Population structure
» Family structure
> Cryptic relatedness

N (y|XB:071)

T T T
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT]
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

population structure
family structure
cryptic relatedness
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Introduction Methodological challenges

Challenges we are going to address

Population structure

» GWA on inflammatory bowel
disease (WTCCC)

» 3.4k cases, 11.9k controls
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Introduction Methodological challenges

Challenges we are going to address

Population structure

» GWA on inflammatory bowel
disease (WTCCC)

» 3.4k cases, 11.9k controls
» Methods

> Linear regression
» Likelihood ratio test
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Introduction Methodological challenges

Challenges we are going to address

Population structure

temp.tab

+ =109

012
Expected Log P values

temp.tab

16

18 2

» GWA on inflammatory bowel g /// :
disease (WTCCC) ¢ ,

» 3.4k cases, 11.9k controls

» Methods

> Linear regression
» Likelihood ratio test

0 01 02 03 04 05 06 07 08 09 1
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Introduction Methodological challenges

Challenges we are going to address

Statistical power and resolution

» Small number of samples, large number of
hypotheses

th
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Introduction Methodological challenges

Challenges we are going to address
Statistical power and resolution

» Small number of samples, large number of
hypotheses

» Rare variants
» Small effect sizes

» Complex phenotypes have multiple
regulators

> Increase power by

» Conditioning on covariates and known
effects

» Testing compound hypotheses (e.g.
test all (rare) variants in a window)

C. Lippert Linear models for GWAS |

October 15

th

2012

24



Outline

Outline

th

C. Lippert Linear models for GWAS | October 157" 2012 25



Linear Regression

Outline

Linear Regression
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Linear Regression

Regression

Noise model and likelihood

> Given a dataset D = {x",y"})_, where x" = {z7,...,2%} is S
dimensional, fit parameters @ of a regressor f with added Gaussian
noise:

y" = f(x";0) + " where p(e|o?) =N (]0,0%).

» Equivalent likelihood formulation:

p(y|X) = HN ' f(x"),0%)
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Linear Regression

Regression
Choosing a regressor

» Choose f to be linear:

p(y | X) = HN y"|x" -0+ c,0%)

n=1

» Consider bias free case, ¢ = 0,
otherwise include an additional
column of ones in each x".
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Linear Regression

Regression
Choosing a regressor

» Choose f to be linear:

p(y | X) = HN n‘x 9+ca) &

» Consider bias free case, ¢ = 0, @_
otherwise include an additional

column of ones in each x™.

n

Equivalent graphical model
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Linear Regression

Linear Regression
Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|605?) = Zln./\/ (y" | x"- 6,0?)

N
N 1
= —§1n27ra2 —22 -0)?
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Linear Regression

Linear Regression
Maximum likelihood

» Taking the logarithm, we obtain
N
Inp(y|605?) = Zln./\/ (y" | x"- 6,0?)
n=1

N
N 1
= —§1n27ra2 —QZ -0)?

Sum of squares

» The likelihood is maximized when the squared error is minimized.
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Linear Regression

Linear Regression
Maximum likelihood

» Taking the logarithm, we obtain

N
Inp(y|605?) = Zln./\/ (y" | x"- 6,0?)

N
N 1
= —§1n27ra2 —QZ -0)?

Sum of squares

» The likelihood is maximized when the squared error is minimized.

» Least squares and maximum likelihood are equivalent.
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Linear Regression
Linear Regression and Least Squares

A Y
mn

fan,w)

1 >
T >

In

(C.M. Bishop, Pattern Recognition and Machine Learning)

n=1

th
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Linear Regression

Linear Regression and Least Squares
» Derivative w.r.t. a single weight entry 6;

d 1 &
a0, | 20z 22 X

n=1

1 N
:72 .

d 2\ _
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Linear Regression

Linear Regression and Least Squares

» Derivative w.r.t. a single weight entry 6;

N
d o d 1 .

L&
L o
» Set gradient w.r.t. 8 to zero
L
Volnp(y|0,0?) —22 x"T =0

— O = (XTX)~ 1XT
—,_/

Pseudo inverse
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Linear Regression

Linear Regression and Least Squares

» Derivative w.r.t. a single weight entry 6;

N
d o d 1 .

1 N
:72 o

» Set gradient w.r.t. 8 to zero

L
VoInp(y|0,07) —22

— O = (XTX)~ 1XT
—,_/
Pseudo inverse

7]

» Here, the matrix X is defined as X = .
ay
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N

piy|X) =[NV (" |x" 0 +278,07)

n=1

X
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N

piy|X) =[NV (" |x" 0 +278,07)

n=1

» 20 SNP to be tested

X
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N
piy|X) =[NV (" |x" 0 +278,07)

n=1

» 20 SNP to be tested
» x": regression covariates (including
bias term)

» Race
» Known background SNPs

» Environment

C. Lippert
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N

ply|X) =[N (" |x"- 6 +a78,0%)

n=1

G

&) &
® ® —@

n

:L,TL
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N

ply|X) =[N (" |x"- 6 +a78,0%)
n=1

> Test Hp: 5 =0 @ @

>

®

—(8) =07

n

Equivalent graphical model

x™: regression covariates

th
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Linear Regression

Testing in Linear Regression
Likelihood Ratio Test

N
ply|X) =[N (" |x"- 6 +a78,0%)

n=1

> Test Hp: 5 =0 @ @
® ®

» The ratio of the ML estimator and
the MLy estimator restricted to Hy
is a common test statistic. @_

—(8) =07

n

Equivalent graphical model

HNilN (y” ‘ x" - OmL + 27 B, U,%,“_) x": regression covariates

H,]:le./\/’ (y” x" . 9[\/||_0 + $?0,0’,%/”_0>
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Hypothesis Testing

Outline

Hypothesis Testing
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Hypothesis Testing

Hypothesis Testing

Example:

» Given a sample
D={xyH, ..., &N, yM)}.

th
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Hypothesis Testing

Hypothesis Testing

Example:
» Given a sample
D={(x"y")....(x",yM)}.
» Test whether Hg : 35 = 0 (null
hypothesis) or H1 : 5s # 0
(alternative hypothesis) is true.
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Hypothesis Testing

Hypothesis Testing

Example:

» Given a sample
D= {<X1a yl)v SRR (XN7yN)}'
» Test whether Hg : 35 = 0 (null
hypothesis) or H1 : 5s # 0
(alternative hypothesis) is true.
» To show that 55 # 0 we can
perform a statistical test that
tries to reject Hy.

th
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Hypothesis Testing

Hypothesis Testing

Example:
» Given a sample
D={(x"y")....(x",yM)}.
» Test whether Hp : s = 0 (null
hypothesis) or H1 : 5s # 0

(alternative hypothesis) is true. L #oholds | #o doesn't hold
Ho accepted true negatives false negatives
» To show that 55 # 0 we can , _ type-2 error
L. Ho rejected false positives true positives
perform a statistical test that type-1 error

tries to reject Hy.

> type 1 error: H, is rejected but
does hold.
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Hypothesis Testing

Hypothesis Testing

Example:

>

Given a sample
D={(xy"),.. .. x",y™)}.
Test whether Hy : 55 = 0 (null
hypothesis) or H1 : 5s # 0

Ho holds

[ Ho doesn’t hold

(alternative hypothesis) is true.

Ho accepted

true negatives

false negatives
type-2 error

To show that 85 # 0 we can
perform a statistical test that
tries to reject Hy.

Ho rejected

type 1 error: H, is rejected but
does hold.

type 2 error: H, is accepted
but does not hold.

Lippert Linear models for GWAS |
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type-1 error
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Hypothesis Testing

Hypothesis Testing

» Given a sample
D={zt,... 2N}

» Test whether Ho : Bs = 0 (null
hypothesis) or Hy : 85 # 0
(alternative hypothesis) is true.

6
test statistic
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Hypothesis Testing

Hypothesis Testing

» Given a sample
D={zt,... 2N}

» Test whether Ho : Bs = 0 (null
hypothesis) or Hy : 85 # 0
(alternative hypothesis) is true.

» The significance level « defines
the threshold and the sensitivity
of the test. This equals the
probability of a type-1 error.

probability density

th
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Hypothesis Testing

» Given a sample
D={zt,... 2N}

» Test whether Ho : Bs = 0 (null
hypothesis) or Hy : 85 # 0
(alternative hypothesis) is true.

» The significance level « defines
the threshold and the sensitivity
of the test. This equals the
probability of a type-1 error.

probability density

» Usually decision is based on a 0 e e —
test statistic.
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Hypothesis Testing

Hypothesis Testing

» Given a sample
D={zt,... 2N}

» Test whether Ho : Bs = 0 (null
hypothesis) or Hy : 85 # 0
(alternative hypothesis) is true.

» The significance level « defines
the threshold and the sensitivity
of the test. This equals the
probability of a type-1 error.

probability density

» Usually decision is based on a 0 e e —
test statistic.

» The critical region defines the
values of the test statistic that
lead to a rejection of the test.

th
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Hypothesis Testing

P-value
definition

» Probability of observing a test statistic at least as extreme (e.g.

likelihood ratio statistic), given that H is true.
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Hypothesis Testing

P-value
definition

» Probability of observing a test statistic at least as extreme (e.g.
likelihood ratio statistic), given that H is true.

» Significance level o becomes threshold on P-value.

th
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Hypothesis Testing

P-value
definition

» Probability of observing a test statistic at least as extreme (e.g.
likelihood ratio statistic), given that H is true.
» Significance level o becomes threshold on P-value.

» Need to know the null distribution of test statistics. (usually
unknown)

th
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Hypothesis Testing

P-value
definition

v

Probability of observing a test statistic at least as extreme (e.g.
likelihood ratio statistic), given that H is true.

v

Significance level o becomes threshold on P-value.

v

Need to know the null distribution of test statistics. (usually
unknown)

v

Possible to generate artificial null-distribution by permutations

th
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Hypothesis Testing

P-value

Permutation procedure

Repeat M times:

th
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Hypothesis Testing

P-value

Permutation procedure

covariates

Repeat M times: My X X5

» Permute phenotype y and
covariates x jointly over individuals.

th
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Hypothesis Testing

P-value

Permutation procedure

covariates

Repeat M times: Ny X X5

» Permute phenotype y and
covariates x jointly over individuals.

» Compute permuted test statistic
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Hypothesis Testing

P-value
Permutation procedure

covariates

Repeat M times: Ny X X5

» Permute phenotype y and
covariates x jointly over individuals.

» Compute permuted test statistic

» Add test statistic to emprirical null
distribution

empirical density

th
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Hypothesis Testing

P-value
Permutation procedure

covariates

Repeat M times: Ny X X5

» Permute phenotype y and
covariates x jointly over individuals.

» Compute permuted test statistic

» Add test statistic to emprirical null
distribution
The P-value is the quantile of real test
statistic in artificial null distribution.

empirical density

th
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Hypothesis Testing

Testing in Linear Regression
Likelihood Ratio Test revisited

» Can equivalently compute
log-likelihood ratio:

)
® —@:0?
OT®@

Equivalent graphical model

x™: regression covariates

th
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Hypothesis Testing

Testing in Linear Regression
Likelihood Ratio Test revisited

» Can equivalently compute
log-likelihood ratio:

N
LR =" log N (4" | x" - O + 2 Bur. o) %)

n=1
—iv: log NV (y"™ ’ x" . OMLO,U,%ALO) l 7 : =0
O1-®

Equivalent graphical model

x™: regression covariates

th
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Hypothesis Testing

Testing in Linear Regression
Likelihood Ratio Test revisited

» Can equivalently compute
log-likelihood ratio:

N
LR =" "log NV (y" |x" - OmL + 27 BuL, o)

n=1

N
3 log N (57 " - B, o)

n=1
» Wilks' theorem: 2LR follows a

Chi-square distribution with 1
degree of freedom.
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Hypothesis Testing

Testing in Linear Regression
Likelihood Ratio Test revisited

» Can equivalently compute
log-likelihood ratio:

N
LR =" "log NV (y" |x" - OmL + 27 BuL, o)

n=1

N
3 log N (57 " - B, o)

n=1

» Wilks' theorem: 2LR follows a
Chi-square distribution with 1
degree of freedom.

» P-value = 1-CDF(2LR).
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Multiple Hypothesis Testing

Outline

Multiple Hypothesis Testing

th
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Multiple Hypothesis Testing

Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

|| Ho holds | Hq doesn't holc
Ho accepted true negatives false negatives
type-2 error
Ho rejected false positives true positives
type-1 error

th
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Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

» In GWAS we perform S = 10° tests

|| Ho holds | Hq doesn't holc
Ho accepted true negatives false negatives
type-2 error
Ho rejected false positives true positives
type-1 error

th

C. Lippert Linear models for GWAS | October 157" 2012 41



Multiple Hypothesis Testing

Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

» In GWAS we perform S = 10° tests

» At o = 0.01 we would expect 10000
type-1 errors!

C. Lippert Linear models for GWAS |
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Multiple Hypothesis Testing

Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

» In GWAS we perform S = 10° tests
» At o = 0.01 we would expect 10000

t 1 | || Ho holds | Hq doesn't holc
ype_ EIrors: Ho accepted true negatives false negatives
. type-2 error
> PrObablllty Of at |eaSt 1 type_l error Ho rejected false positives true positives
. -1
is 1 _ (1 _ Oé)S N 1 type-1 error

th
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Multiple Hypothesis Testing

Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

» In GWAS we perform S = 10° tests
» At o = 0.01 we would expect 10000

t 1 | || Ho holds | Hq doesn't holc
ype_ EIrors: Ho accepted true negatives false negatives
. type-2 error
> PrObablllty Of at |eaSt 1 type_l error Ho rejected false positives true positives
. -1
is1—(1—a)® =1 typerd eror

» Individual P-values < 0.01 are not
significant anymore.
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Multiple Hypothesis Testing

Multiple Hypothesis Testing

Motivation

» Significance level « equals
probability of type-1 error.

» In GWAS we perform S = 10° tests
» At o = 0.01 we would expect 10000

I

Ho holds

| o doesn't holc

type-1 errors!

Ho accepted

true negatives

false negatives
type-2 error

» Probability of at least 1 type-1 error o Teecied
is1—(1—a)—1

» Individual P-values < 0.01 are not
significant anymore.

Need to correct for multiple hypothesis
testing!
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Multiple Hypothesis Testing

Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

» Probability of at least one type-1

error.
H Ho holds [ Ho doesn't holc
H( accepted true negatives false negatives
type-2 error
Ho rejected false positives true positives
type-1 error

th
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Multiple Hypothesis Testing

Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

» Probability of at least one type-1
error.

» Correct by bounding the FWER.
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Multiple Hypothesis Testing

Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

» Probability of at least one type-1

error.
» Correct by bounding the FWER. || #Hoholds | Hq doesn't hok
. . H( accepted true negatives false negatives
» Bonferroni correction: Pg = P - S type-2 error
Ho rejected false positives true positives
type-1 error

th
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Multiple Hypothesis Testing

Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

> Probability of at least one type-1
error.
» Correct by bounding the FWER. || #Hoholds | Hq doesn't hok
. . H( accepted true negatives false negatives
» Bonferroni correction: Pg = P - S type-2 error
Ho rejected false positives true positives
> type-1 error

Equivalently P < % significant.

th
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Multiple Hypothesis Testing

Multiple Hypothesis Testing
Family-Wise Error Rate (FWER)

» Probability of at least one type-1
error.

» Correct by bounding the FWER.

I

Ho holds

[ Ho doesn't holc

. . H( accepted
» Bonferroni correction: Pg = P - S

true negatives

false negatives
type-2 error

Ho rejected

» Equivalently P < % significant.

» Bounds the FWER 1 — (1 — v/ S)”
by «

C. Lippert Linear models for GWAS |
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Outline

Model Checking
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Model Checking

» Do my estimated P-values match
the true null distribution?

fodnbe Sk oo FAST.LMM 2010.11.9:16.50.41Tab.bt

» By definition uniformly distributed
under null distribution.

temp.at

o
0 01 02 03 04 05 05 07 08 08 |
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Model Checking

» Do my estimated P-values match
the true null distribution?
» By definition uniformly distributed
under null distribution.

fodnbe Sk oo FAST.LMM 2010.11.9:16.50.41Tab.bt

» Do the empirical results match my
assumptions on the null model?

01 02 03 04 05 06

> In GWAS we perform a large
number of tests. (usually in the
order of 10°)

temp.at

o
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Model Checking

Model Checking

» Do my estimated P-values match
the true null distribution?
» By definition uniformly distributed
under null distribution.

fodnbe Sk car FAST.LMM 2010.11.5

» Do the empirical results match my
assumptions on the null model?

> In GWAS we perform a large
number of tests. (usually in the
order of 10%)

> Use the strong prior knowledge that
in GWAS almost all of the test
SNPs have no effect on the
phenotype.

o
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C. Lippert Linear models for GWAS | October 157 2012 44



Model Checking

Model Checking

>

Do my estimated P-values match
the true null distribution?

» By definition uniformly distributed
under null distribution.
Do the empirical results match my
assumptions on the null model?

In GWAS we perform a large
number of tests. (usually in the
order of 10°)

Use the strong prior knowledge that
in GWAS almost all of the test
SNPs have no effect on the
phenotype.

Empirical test statistics should
follow the null distribution

C. Lippert Linear models for GWAS |
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null
distribution.
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null
distribution.

» Sort test statistics

C. Lippert Linear models for GWAS |

October 15

th

2012

45



Model Checking

Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null
distribution.

ibd-nbs-5k-cov. FAST.LMM.2010.11.9-18.50.41 Tab.txt

» Sort test statistics : -

> Plot test statisitcs against (y-axis)
quantiles of the theoretical
null-distribution (x-axis)
» for example: 2LR vs. x?

Observed Log P values

AMMbmmqmm
N
\

+ a=1078

8 9

4 5 b
Expected Log P values

th
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null
distribution.

ibd-nbs-5k-cov. FAST.LMM.2010.11.9-18.50.41 Tab.txt

» Sort test statistics : -

> Plot test statisitcs against (y-axis)
quantiles of the theoretical
null-distribution (x-axis)
» for example: 2LR vs. x?

Observed Log P values

AMMbmmqmm
N
\

» If the plot is close to the diagonal,

the distributions match up s

8 9

4 5 b
Expected Log P values
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Model Checking
QQ-plot

Compare quantiles of the empirical test
statistic distribution to assumed null

distribution.
» Sort test statistics .
> Plot test statisitcs against (y-axis) &
quantiles of the theoretical ;
null-distribution (x-axis) o
» for example: 2LR vs. x? N /;i/

» If the plot is close to the diagonal,
the distributions match up e e I e

0
Expected Log P values

» Deviation from the diagonal
indicates inflation or deflation of
test statistics.
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Summary

» Introduction
» Genetics terminology
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Summary
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Introduction
» Genetics terminology
» Study design
» Data preparation
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» Power
» Multiple hypothesis testing
» Population structure

> Linear regression for association studies.
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Hypothesis testing
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Multiple hypothesis testing correction.
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Summary

v

Introduction
» Genetics terminology
» Study design
» Data preparation

v

Challenges and pitfalls
> Power
» Multiple hypothesis testing
» Population structure

> Linear regression for association studies.

v

Hypothesis testing

v

Multiple hypothesis testing correction.

v

Model checking.
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