Linear models for GWAS

I: Introduction and linear regression

Christoph Lippert

Microsoft Research, Los Angeles, USA

Research

October 15^{th} 2012 1

Current topics in computational biology UCLA October 15^{th} , 2012

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

イロト イポト イヨト イヨト

 Further challenges and outlook

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

イロト 不得下 イヨト イヨト 二日

 Further challenges and outlook

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction

イロト 不得下 イヨト イヨト 二日

 Further challenges and outlook

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction
- Further challenges and outlook

October 15th 2012 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

October 15^{th}

- Introduction
 - Terminology
 - Study design
 - Data preparation
 - Challenges and pitfalls
 - Course overview
- Linear regression
 - Parameter estimation
 - Statistical testing

October 17^{th}

- Linear mixed models
 - Population structure correction
 - Parameter estimation
 - Variance component modeling
 - Phenotype prediction
- Further challenges and outlook

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Outline

Outline

Linear models for GWAS I

Introduction

Outline

Introduction

Why QTL mapping

C. Lippert

Linear models for GWAS I

October 15th 2012

4

Genotype to phenotype mapping

Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, ...

Why QTL mapping

Genotype to phenotype mapping

Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers

< ロト < 同ト < ヨト < ヨト

Why QTL mapping

Genotype to phenotype mapping

Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, ...

< 口 > < 同 >

Genotype to phenotype mapping

Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, ...

October 15th 2012

5

Goal:

Identify causal loci that explain phenotypic differences.

Genotype to phenotype mapping

Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, ...

Goal:

Identify causal loci that explain phenotypic differences.

Linear models for GWAS I

イロト イポト イヨト イヨト

Use of GWAs in plant systems

- Basic biology
 - Understand the makeup of molecular pathways
 - Dissect the genetic component of natural variation.
 - Genotype-environment interactions
- Breeding
 - Mine for markers causal for phenotype to assist in breeding decisions.
 - Maximization of yield, pathogene resistance, etc.

< 口 > < 同 >

Use of GWAs in plant systems

- Basic biology
 - Understand the makeup of molecular pathways
 - Dissect the genetic component of natural variation.
 - Genotype-environment interactions
- Breeding
 - Mine for markers causal for phenotype to assist in breeding decisions.
 - Maximization of yield, pathogene resistance, etc.

< 口 > < 同 >

Linear models for GWAS I

Use of GWAs in plant systems

- Basic biology
 - Understand the makeup of molecular pathways
 - Dissect the genetic component of natural variation.
 - Genotype-environment interactions
- Breeding
 - Mine for markers causal for phenotype to assist in breeding decisions.
 - Maximization of yield, pathogene resistance, etc.

イロト イポト イヨト イヨト

Linear models for GWAS I

Personalized medicine & health

- Adapting treatment to the patients genetic make-up.
 - Targeting patients who can benefit.
 - Appropriate dosage of a drug by using genetic variants to understand drug metabolism (e.g., anti-depressants, beta blockers, opioid analgesics).
 - Disease subcategorization

Risk prediction

- Known causal variants help to identify individuals with higher risk to develop a particular disease.
- Improved monitoring of high-risk groups.

Linear models for GWAS I

Why QTL mapping

Personalized medicine & health

- Adapting treatment to the patients genetic make-up.
 - Targeting patients who can benefit.
 - Appropriate dosage of a drug by using genetic variants to understand drug metabolism (e.g., anti-depressants, beta blockers, opioid analgesics).
 - Disease subcategorization

Risk prediction

- Known causal variants help to identify individuals with higher risk to develop a particular disease.
- Improved monitoring of high-risk groups.

Linear models for GWAS I

October 15th 2012 7

イロト 不得下 イヨト イヨト 二日

Introduction Why QTL mapping

Personalized medicine & health Publication boost

October 15^{th} 2012 8

3 x 3

A B > A B >

Personalized medicine & health Publication boost

Linear models for GWAS I

- Genotype denotes the genetic state of an individual.
 - Denoted by \mathbf{x}^n for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by \mathbf{y}^n for individual n.
- A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT ATGACCTGCAACTGGGGGATGACGTGCAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT ATGACCTGAACTGGGGGATTGACGTGGAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

< ロ > < 同 > < 回 > < 回 > < 回 > <

Linear models for GWAS I

- Genotype denotes the genetic state of an individual.
 - Denoted by \mathbf{x}^n for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by \mathbf{y}^n for individual n.
- A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus.

image source: Wikipedia

(日) (同) (三) (三) (三)

 $\mathbb{E} \rightarrow \langle \mathbb{E} \rightarrow \mathbb{E}$ October 15th 2012

9

- Genotype denotes the genetic state of an individual.
 - Denoted by \mathbf{x}^n for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by \mathbf{y}^n for individual n.
- A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus.

イロト イポト イヨト イヨト

October 15^{th} 2012

- Genotype denotes the genetic state of an individual.
 - Denoted by \mathbf{x}^n for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by \mathbf{y}^n for individual n.
- A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT ATGACCTGCAACTGGGGGACTGACGTGCAACGGT ATGACCTGCAACTGGGGGACTGACGTGCAACGGT ATGACCTCGAACTGGGGGATTGACGTGGAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT ATGACCTGCAACTGGGGGATGACGGT

イロト 不得 トイヨト イヨト

October 15^{th} 2012

a

SNP<

A/C

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. A. thaliana, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - ▶ e.g. human
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - e.g. sugar cane is hexaploid.

イロト 不得 トイヨト イヨト 二日

image source: Wikipedia

Linear models for GWAS I

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. A. thaliana, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - ▶ e.g. *human*
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - ▶ e.g. *sugar cane* is hexaploid.

イロト 不得 トイヨト イヨト 二日

image source: Wikipedia

Linear models for GWAS I

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. A. thaliana, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - ▶ e.g. human
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - e.g. *sugar cane* is hexaploid.

image source: Wikipedia

Linear models for GWAS I

Even more definitions

- Haplotype denotes an individual's state of a single set of chromosomes (paternal or maternal).
- A locus is homozygous if the paternal and maternal haplotypes are identical.
- A locus is heterozygous if it differs between paternal and maternal haplotypes.

ATGACCTG**A**AACTGGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT

イロト イロト イヨト イヨト 三日

October 15th 2012

11

A/A

Even more definitions

- Haplotype denotes an individual's state of a single set of chromosomes (paternal or maternal).
- A locus is homozygous if the paternal and maternal haplotypes are identical.
- A locus is heterozygous if it differs between paternal and maternal haplotypes.

ATGACCTG**A**AACTGGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT

イロト イロト イヨト イヨト 三日

October ${15}^{th}$ 2012

11

A/C

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial
 - e.g.: Linkage
 - ≻ Can be harmful
 - e.g.: Population structure

statistical dependence

イロト 不得下 イヨト イヨト 二日

[Upton and Cook, 2002]

Linear models for GWAS I

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association

statistical dependence

イロト 不得下 イヨト イヨト 二日

[Upton and Cook, 2002]

Linear models for GWAS I

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial
 - e.g.: Linkage
 - 🖂 Can be harmful
 - e.g.: Population structure

イロト 不得下 イヨト イヨト 二日

[Upton and Cook, 2002]

October 15^{th} 2012

12

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial
 - e.g.: Linkage
 - Can be harmful
 - e.g.: Population structure

イロト イポト イヨト イヨト

[Upton and Cook, 2002]

Linear models for GWAS I

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial e.g.: Linkage
 - Can be harmful e.g.: Population structure

イロト イポト イヨト イヨト

[Upton and Cook, 2002]

Linear models for GWAS I

 $\equiv \flat \prec \equiv \flat \equiv \circ \circ \circ \circ$ October 15th 2012 12

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial e.g.: Linkage
 - Can be harmful
 - e.g.: Population structure

(日) (周) (三) (三)

[Upton and Cook, 2002]

3

12

October 15^{th} 2012

Terminology & background Introduction

Result Example GWAS on A. thaliana

Phenotype: Flowering time at 10 degrees

[Atwell et al., 2010]

13

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012
Terminology & background Introduction

Result Example GWAS on A. thaliana

- Phenotype: Flowering time at 10 degrees
- Test every SNP in the genome for association with floweringtime

[Atwell et al., 2010]

13

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012

Result Example GWAS on *A. thaliana*

- Phenotype: Flowering time at 10 degrees
- Test every SNP in the genome for association with floweringtime
- Position vs. Log10(P-value) (Manhattan plot)

< □ > < ---->

[Atwell et al., 2010]

Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - No relatedness
 - Typically haploid.
- Multi-parent crosses
 - Increased genetic diversity
 - No relatedness
 - Typically haploid.

Linear models for GWAS I

Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - No relatedness
 - Typically haploid.
- Multi-parent crosses
 - Increased genetic diversity
 - No relatedness
 - Typically haploid.

October 15th 2012 14

イロト 不得 トイヨト イヨト 二日

Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - No relatedness
 - Typically haploid.
- Multi-parent crosses
 - Increased genetic diversity
 - No relatedness
 - Typically haploid.

Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous minor allele usually encoded as 2

ATGACCTG**A**AACTGGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT

3

15

October 15^{th} 2012

Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous *minor* allele usually encoded as 2

ATGACCTGAAACTGGGGGGACTGACGTGGAACGGT ATGACCTGCAACTGGGGGGACTGACGTGCAACGGT

イロト 不得下 イヨト イヨト 二日

October ${15}^{th}$ 2012

15

A/C

Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous *minor* allele usually encoded as 2

ATGACCTG**A**AACTGGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGA**C**TGACGTG**C**AACGGT

イロト 不得下 イヨト イヨト 二日

A/A

Linkage Disequilibrium Physical linkage

Recombination causes linkage between loci.

- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.

Fig. 64. Scheme to illustrate a method of erossing over of the chromosomes,

イロト イポト イヨト イヨト

Linear models for GWAS I

Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.

Fig. 64. Scheme to illustrate a method of erossing over of the chromosomes,

イロト イポト イヨト イヨト

image source: Wikipedia

Linear models for GWAS I

Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.

Fig. 64. Scheme to illustrate a method of erassing over of the chromosomes.

イロト イポト イヨト イヨト

image source: Wikipedia

Linear models for GWAS I

Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.

イロト イポト イヨト イヨト

Binary

- case, control

- e.g. disease status

October 15^{th} 2012

17

Binary

- case, control
- Continuous

e.g. disease status

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012

17

Binary

- case, control
- Continuous
 - Gaussian

- e.g. disease status
- height

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ October 15^{th} 2012

17

Binary

- case, control
- Continuous
 - Gaussian
 - Non-Gaussian

- e.g. disease status
- height
- survival time, cell counts

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ October 15^{th} 2012

17

Binary

- case, control
- Continuous
 - Gaussian
 - Non-Gaussian
- Multivariate

- e.g. disease status
- height
- survival time, cell counts

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012

17

- gene-expression

Binary

- case, control
- Continuous
 - Gaussian
 - Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012

17

- gene-expression
- Images, videos

Preprocessing Genotype

Imputation of missing values

- Hidden Markov Models and related approaches
- Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered out

Genotype imputation accuracy from SNP-chip to 80Genomes reference panel [Cao et al., 2011].

[Browning and Browning, 2009]

Linear models for GWAS I

Preprocessing Genotype

- Imputation of missing values
 - Hidden Markov Models and related approaches
 - Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered out

Genotype imputation accuracy from SNP-chip to 80Genomes reference panel [Cao et al., 2011].

(日) (同) (三) (三)

[Browning and Browning, 2009]

October 15^{th} 2012

18

Preprocessing Genotype

- Imputation of missing values
 - Hidden Markov Models and related approaches
 - Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered out

Minor allele frequency from 160 *A. thaliana* lines; 2.3 million genome-wide SNPs from NGS sequencing

イロト イポト イヨト イヨト

Linear models for GWAS I

Phenotype

Most parametric models are based on Gaussianity assumptions

- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization

Box-Cox transformation

[Spitzer, 1982]

イロト 不得 トイヨト イヨト 二日

Phenotype

- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization
 - Box-Cox transformation

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

イロト イポト イヨト イヨト

[Spitzer, 1982]

3

Linear models for GWAS I

Phenotype

- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization
 - Box-Cox transformation

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

イロト イポト イヨト イヨト

[Spitzer, 1982]

Linear models for GWAS I

Phenotype

- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization
 - Box-Cox transformation

Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

(日) (同) (三) (三)

[Spitzer, 1982]

Linear models for GWAS I

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x₁ and x₂ are D and r².

(日) (同) (日) (日) (日)

C. Lippert

Linear models for GWAS I

October 15th 2012 20

3

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

Linear models for GWAS I

October 15th 2012 20

イロト 不得下 イヨト イヨト 二日

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

Linear models for GWAS I

October 15th 2012 20

イロト 不得下 イヨト イヨト 二日

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

イロト 不得下 イヨト イヨト 二日

C. Lippert

Linear models for GWAS I

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

►
$$D = f_{AA} - f_{.A}f_{A.}$$

► $r^2 = \frac{D^2}{f_{AA}f_{AB}f_{BA}f_{BB}}$
► $D \neq 0$ and $r^2 \neq 0$ are indicators of LD

イロト 不得下 イヨト イヨト

C. Lippert

Linear models for GWAS I

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

$$D = f_{AA} - f_{.A}f_{A.}.$$

$$r^2 = \frac{D^2}{f_{AA}f_{AB}f_{BA}f_{BB}}$$

D ≠ 0 and r² ≠ 0 are indicators of LD.

イロト 不得下 イヨト イヨト 二日

C. Lippert

Linear models for GWAS I

Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- ► Measures of LD between two loci x₁ and x₂ are D and r².

►
$$D = f_{AA} - f_{.A}f_{A.}$$

► $r^2 = \frac{D^2}{f_{AA}f_{AB}f_{BA}f_{BB}}$

 D ≠ 0 and r² ≠ 0 are indicators of LD.

イロト イポト イヨト イヨト

October 15th 2012 20

3

- ► In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!

< 口 > < 同 >

Linear models for GWAS I

- In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!

- In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- Thus, individual P-values
 < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!

- In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- Thus, individual P-values
 < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

- Confounding structure leads to false positives.
 - Population structure
 - Family structure
 - Cryptic relatedness

イロト イポト イヨト イヨト

Linear models for GWAS I

- GWA on inflammatory bowel disease (WTCCC)
- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 Likelihood ratio te

- GWA on inflammatory bowel disease (WTCCC)
- 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- GWA on inflammatory bowel disease (WTCCC)
- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

< 17 >

Linear models for GWAS I

 Small number of samples, large number of hypotheses

- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects
 - Testing compound hypotheses (e.g. test all (rore) variants in a window)

 Small number of samples, large number of hypotheses

- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects
 - Testing compound hypotheses (e.g. test all (rore) variants in a window)

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects
 - Testing compound hypotheses (e.g. test all (rore) variants in a window)

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects
 - Testing compound hypotheses (e.g. test all (rare) variants in a window)

Linear models for GWAS I

イロト 不得 トイヨト イヨト 二日

October 15th 2012

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by

Linear models for GWAS I

October 15th 2012

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects

Linear models for GWAS I

October 15th 2012

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on covariates and known effects
 - Testing compound hypotheses (e.g. test all (rare) variants in a window)

(日) (周) (三) (三) (三) (○) (○)

Outline

Outline

Linear models for GWAS I

Outline

Introduction

Why QTL mapping Terminology & background Methodological challenges

Linear Regression

Hypothesis Testing

Multiple Hypothesis Testing

Model Checking

C. Lippert

Linear models for GWAS I

October 15th 2012 26

(日) (四) (王) (王) (王)

Regression Noise model and likelihood

> • Given a dataset $\mathcal{D} = \{\mathbf{x}^n, y^n\}_{n=1}^N$, where $\mathbf{x}^n = \{x_1^n, \dots, x_S^n\}$ is S dimensional, fit parameters θ of a regressor f with added Gaussian noise:

$$y^n = f(\mathbf{x}^n; \boldsymbol{\theta}) + \epsilon^n \quad \text{where} \quad p(\epsilon \,|\, \sigma^2) = \mathcal{N}\left(\epsilon \,\big|\, 0, \sigma^2\right).$$

Equivalent likelihood formulation:

$$p(\mathbf{y} \,|\, \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N}\left(y^n \,\big|\, f(\mathbf{x}^n), \sigma^2\right)$$

October 15th 2012

27

C. Lippert

Linear models for GWAS I

Regression Choosing a regressor

Choose f to be linear:

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + c, \sigma^2 \right)$$

• Consider bias free case, c = 0, otherwise include an additional column of ones in each \mathbf{x}^n .

October 15^{th} 2012

Regression Choosing a regressor

Choose f to be linear:

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + c, \sigma^2 \right)$$

Consider bias free case, c = 0, otherwise include an additional column of ones in each xⁿ.

Equivalent graphical model

イロト イポト イヨト イヨト

Linear models for GWAS I

 $\Xi \rightarrow \langle \Xi \rangle \equiv \langle \Im \rangle \langle C \rangle$ October 15th 2012 28

Linear Regression Maximum likelihood

Taking the logarithm, we obtain

$$\ln p(\mathbf{y} \mid \boldsymbol{\theta} \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y^n \mid \mathbf{x}^n \cdot \boldsymbol{\theta}, \sigma^2 \right)$$
$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2}_{\text{Sum of squares}}$$

The likelihood is maximized when the squared error is minimized.

Least squares and maximum likelihood are equivalent.

C. Lippert

Linear models for GWAS I

October 15th 2012 29

イロト 不得 トイヨト イヨト 二日

Linear Regression Maximum likelihood

Taking the logarithm, we obtain

$$\ln p(\mathbf{y} \mid \boldsymbol{\theta} \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y^n \mid \mathbf{x}^n \cdot \boldsymbol{\theta}, \sigma^2 \right)$$
$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2}_{\text{Sum of squares}}$$

The likelihood is maximized when the squared error is minimized.

C. Lippert

Linear models for GWAS I

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで October 15^{th} 2012

Linear Regression Maximum likelihood

Taking the logarithm, we obtain

$$\ln p(\mathbf{y} \mid \boldsymbol{\theta} \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N} \left(y^n \mid \mathbf{x}^n \cdot \boldsymbol{\theta}, \sigma^2 \right)$$
$$= -\frac{N}{2} \ln 2\pi \sigma^2 - \frac{1}{2\sigma^2} \underbrace{\sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2}_{\text{Sum of squares}}$$

The likelihood is maximized when the squared error is minimized.

• Least squares and maximum likelihood are equivalent.

Linear Regression and Least Squares

(C.M. Bishop, Pattern Recognition and Machine Learning)

$$E(\boldsymbol{\theta}) = \frac{1}{2} \sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2$$

C. Lippert

Linear models for GWAS I

 $\equiv \flat \triangleleft \equiv \flat \equiv \mathscr{O} \land \mathfrak{O}$ October 15th 2012 30

Linear Regression and Least Squares

• Derivative w.r.t. a single weight entry θ_i

$$\frac{d}{\mathrm{d}\theta_i} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{d}{\mathrm{d}\theta_i} \left[-\frac{1}{2\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2 \right]$$
$$= \frac{1}{\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) x_i$$

$$\nabla_{\boldsymbol{\theta}} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) \mathbf{x}^{n\mathrm{T}} = 0$$
$$\implies \boldsymbol{\theta}_{\mathrm{ML}} = \underbrace{(\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}}}_{\mathbf{X}} \mathbf{y}$$

• Here, the matrix \mathbf{X} is defined as $\mathbf{X} = \begin{bmatrix} x_1^1 & \dots & x_S^1 \\ \dots & \dots & \dots \\ x_1^N & \dots & x_S^N \end{bmatrix}$ I = 1 = 1

C. Lippert

Linear models for GWAS I

Linear Regression and Least Squares

• Derivative w.r.t. a single weight entry θ_i

$$\frac{d}{\mathrm{d}\theta_i} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{d}{\mathrm{d}\theta_i} \left[-\frac{1}{2\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2 \right]$$
$$= \frac{1}{\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) x_i$$

• Set gradient w.r.t. θ to zero

$$\nabla_{\boldsymbol{\theta}} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) \mathbf{x}^{n\mathrm{T}} = 0$$
$$\implies \boldsymbol{\theta}_{\mathsf{ML}} = \underbrace{(\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}}}_{\mathsf{Pseudo inverse}} \mathbf{y}$$

C. Lippert

Linear models for GWAS I

October 15th 2012 31

 $\begin{bmatrix} x_1^N \dots & x_S^N \end{bmatrix}$

Linear Regression and Least Squares

• Derivative w.r.t. a single weight entry θ_i

$$\frac{d}{\mathrm{d}\theta_i} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{d}{\mathrm{d}\theta_i} \left[-\frac{1}{2\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta})^2 \right]$$
$$= \frac{1}{\sigma^2} \sum_{n=1}^N (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) x_i$$

• Set gradient w.r.t. θ to zero

$$\nabla_{\boldsymbol{\theta}} \ln p(\mathbf{y} \mid \boldsymbol{\theta}, \sigma^2) = \frac{1}{\sigma^2} \sum_{n=1}^{N} (y^n - \mathbf{x}^n \cdot \boldsymbol{\theta}) \mathbf{x}^{nT} = 0$$

$$\implies \boldsymbol{\theta}_{\mathsf{ML}} = \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T}_{\mathsf{Pseudo inverse}} \mathbf{y}$$

$$\blacktriangleright \text{ Here, the matrix } \mathbf{X} \text{ is defined as } \mathbf{X} = \begin{bmatrix} x_1^1 & \dots & x_S^1 \\ \dots & \dots & \dots \\ x_1^N & \dots & x_S^N \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{x}_1^N & \dots & \mathbf{x}_S^N \end{bmatrix}$$

C. Lippert

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + x_s^n \beta, \sigma^2 \right)$$

- x_s^n : SNP to be tested
- xⁿ: regression covariates (including bias term)
 - Race
 - Known background SNPs
 - Environment

Equivalent graphical model x^n : regression covariates

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^{n} | \mathbf{x}^{n} \cdot \boldsymbol{\theta} + x_{s}^{n} \beta, \sigma^{2} \right)$$

• x_s^n : SNP to be tested

 xⁿ: regression covariates (including bias term)

- Race
- Known background SNPs
- Environment

Equivalent graphical model

 x^n : regression covariates

イロト 不得 トイヨト イヨト 二日

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + x_s^n \beta, \sigma^2 \right)$$

- x_s^n : SNP to be tested
- xⁿ: regression covariates (including bias term)
 - Race
 - Known background SNPs
 - Environment

Equivalent graphical model

 x^n : regression covariates

イロト イポト イヨト イヨト

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + x_s^n \beta, \sigma^2 \right)$$

- Test $\mathcal{H}_0: \beta = 0$
- ► The ratio of the ML estimator and the ML₀ estimator restricted to H₀ is a common test statistic.

Equivalent graphical model

 x^n : regression covariates

イロト イポト イヨト イヨト

33

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + x_s^n \beta, \sigma^2 \right)$$

- Test $\mathcal{H}_0: \beta = 0$
- ► The ratio of the ML estimator and the ML₀ estimator restricted to H₀ is a common test statistic.

Equivalent graphical model

 x^n : regression covariates

イロト イポト イヨト イヨト

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test

$$p(\mathbf{y} | \mathbf{X}) = \prod_{n=1}^{N} \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta} + x_s^n \beta, \sigma^2 \right)$$

- Test $\mathcal{H}_0: \beta = 0$
- ► The ratio of the ML estimator and the ML₀ estimator restricted to H₀ is a common test statistic.

$$\frac{\prod_{n=1}^{N} \mathcal{N}\left(y^{n} \left| \mathbf{x}^{n} \cdot \boldsymbol{\theta}_{\mathsf{ML}} + x_{s}^{n} \beta_{\mathsf{ML}}, \sigma_{\mathsf{ML}}^{2}\right)}{\prod_{n=1}^{N} \mathcal{N}\left(y^{n} \left| \mathbf{x}^{n} \cdot \boldsymbol{\theta}_{\mathsf{ML}_{0}} + x_{s}^{n} 0, \sigma_{\mathsf{ML}_{0}}^{2}\right)\right.}$$

Equivalent graphical model

 x^n : regression covariates

Linear models for GWAS I

 $\Xi
ightarrow \Xi
ightarrow \Xi
ightarrow \Theta
ightarrow C$ October 15th 2012 33 Hypothesis Testing

Outline

Introduction

Why QTL mapping Terminology & background Methodological challenges

Linear Regression

Hypothesis Testing

Multiple Hypothesis Testing

Model Checking

C. Lippert

Linear models for GWAS I

Hypothesis Testing

Hypothesis Testing

Example:

• Given a sample $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}.$

► Test whether H₀: β_s = 0 (null hypothesis) or H₁: β_s ≠ 0 (alternative hypothesis) is true.

- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ▶ type 1 error: H₀ is rejected but does hold.
- ► type 2 error: H₀ is accepted but does not hold.

Hypothesis Testing

Hypothesis Testing

Example:

- Given a sample $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}.$
- ► Test whether $\mathcal{H}_0 : \beta_s = 0$ (null hypothesis) or $\mathcal{H}_1 : \beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ▶ **type 1 error:** \mathcal{H}_0 is rejected but does hold.
- ▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

(日) (四) (王) (王) (王)
Hypothesis Testing

Example:

- Given a sample $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}.$
- ► Test whether $\mathcal{H}_0: \beta_s = 0$ (null hypothesis) or $\mathcal{H}_1: \beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.
- ► type 1 error: H₀ is rejected but does hold.
- ▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hypothesis Testing

Example:

- Given a sample $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}.$
- ► Test whether $\mathcal{H}_0: \beta_s = 0$ (null hypothesis) or $\mathcal{H}_1: \beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.

type 1 error:	\mathcal{H}_0 is rejected but	
does hold.		

▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

	$ $ \mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Linear models for GWAS I

Hypothesis Testing

Example:

- Given a sample $\mathcal{D} = \{(\mathbf{x}^1, y^1), \dots, (\mathbf{x}^N, y^N)\}.$
- ► Test whether $\mathcal{H}_0: \beta_s = 0$ (null hypothesis) or $\mathcal{H}_1: \beta_s \neq 0$ (alternative hypothesis) is true.
- ► To show that β_s ≠ 0 we can perform a statistical test that tries to reject H₀.

type 1 error:	\mathcal{H}_0	is	rejected	but
does hold.				

▶ **type 2 error:** \mathcal{H}_0 is accepted but does not hold.

	$ $ \mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hypothesis Testing

- Given a sample $\mathcal{D} = \{x^1, \dots, x^N\}.$
- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region defines the values of the test statistic that lead to a rejection of the test.

イロト イポト イヨト イヨト

Hypothesis Testing

- Given a sample $\mathcal{D} = \{x^1, \dots, x^N\}.$
- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region defines the values of the test statistic that lead to a rejection of the test.

・ロト ・ 理ト ・ ヨト ・ ヨト

Hypothesis Testing

- Given a sample $\mathcal{D} = \{x^1, \dots, x^N\}.$
- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region defines the values of the test statistic that lead to a rejection of the test.

Hypothesis Testing

- Given a sample $\mathcal{D} = \{x^1, \dots, x^N\}.$
- ► Test whether H₀ : β_s = 0 (null hypothesis) or H₁ : β_s ≠ 0 (alternative hypothesis) is true.
- The significance level α defines the threshold and the sensitivity of the test. This equals the probability of a type-1 error.
- Usually decision is based on a test statistic.
- The critical region defines the values of the test statistic that lead to a rejection of the test.

P-value definition

- Probability of observing a test statistic at least as extreme (e.g. likelihood ratio statistic), given that H₀ is true.
- Significance level α becomes threshold on P-value.
- Need to know the null distribution of test statistics. (usually unknown)
- Possible to generate artificial null-distribution by permutations

イロト イロト イヨト イヨト 三日

P-value definition

- Probability of observing a test statistic at least as extreme (e.g. likelihood ratio statistic), given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- Possible to generate artificial null-distribution by permutations

P-value definition

- Probability of observing a test statistic at least as extreme (e.g. likelihood ratio statistic), given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- Possible to generate artificial null-distribution by permutations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

P-value definition

- Probability of observing a test statistic at least as extreme (e.g. likelihood ratio statistic), given that H₀ is true.
- Significance level α becomes threshold on *P*-value.
- Need to know the null distribution of test statistics. (usually unknown)
- Possible to generate artificial null-distribution by permutations

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

P-value Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

P-value Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

< □ > < ---->

- N

- E - N

P-value Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

< □ > < ---->

- N

P-value Permutation procedure

Repeat M times:

- Permute phenotype y and covariates x jointly over individuals.
- Compute permuted test statistic
- Add test statistic to emprirical null distribution

Linear models for GWAS I

P-value Permutation procedure

- Repeat M times:
 - Permute phenotype y and covariates x jointly over individuals.
 - Compute permuted test statistic
 - Add test statistic to emprirical null distribution
- The P-value is the quantile of real test statistic in artificial null distribution.

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree of freedom.
- *P*-value = 1-CDF(2LR).

Equivalent graphical model x^n : regression covariates

(日) (同) (三) (三)

Linear models for GWAS I

Testing in Linear Regression Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{LR} = \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}} + x_s^n \beta_{\mathsf{ML}}, \sigma_{\mathsf{ML}}^2 \right) \\ - \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree of freedom.
- P-value = 1-CDF(2LR).

Equivalent graphical model x^n : regression covariates

(日) (同) (三) (三)

Testing in Linear Regression Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{LR} = \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}} + x_s^n \beta_{\mathsf{ML}}, \sigma_{\mathsf{ML}}^2 \right) \\ - \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

(source: Wikipedia)

 Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree of freedom.

• P-value = 1-CDF(2LR).

Linear models for GWAS I

October 15th 2012 39

C. Lippert

Testing in Linear Regression Likelihood Ratio Test revisited

 Can equivalently compute log-likelihood ratio:

$$\mathsf{LR} = \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}} + x_s^n \beta_{\mathsf{ML}}, \sigma_{\mathsf{ML}}^2 \right) \\ - \sum_{n=1}^{N} \log \mathcal{N} \left(y^n \, \big| \, \mathbf{x}^n \cdot \boldsymbol{\theta}_{\mathsf{ML}_0}, \sigma_{\mathsf{ML}_0}^2 \right)$$

- Wilks' theorem: 2LR follows a Chi-square distribution with 1 degree of freedom.
- P-value = 1-CDF(2LR).

Outline

Introduction

Why QTL mapping Terminology & background Methodological challenges

Linear Regression

Hypothesis Testing

Multiple Hypothesis Testing

Model Checking

C. Lippert

Linear models for GWAS I

October 15^{th} 2012

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S = 10^6$ tests
- At α = 0.01 we would expect 10000 type-1 errors!
- Probability of at least 1 type-1 error is 1 − (1 − α)^S → 1.
- Individual P-values < 0.01 are not significant anymore.

	\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

イロト 不得 トイヨト イヨト 二日

Linear models for GWAS I

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S = 10^6$ tests
- At α = 0.01 we would expect 10000 type-1 errors!
- Probability of at least 1 type-1 error is 1 − (1 − α)^S → 1.
- Individual P-values < 0.01 are not significant anymore.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

イロト 不得 トイヨト イヨト 二日

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- At $\alpha = 0.01$ we would expect 10000 type-1 errors!
- Probability of at least 1 type-1 error is 1 − (1 − α)^S → 1.
- Individual *P*-values < 0.01 are not significant anymore.

		\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
$-\mathcal{H}_0$) accepted	true negatives	false negatives type-2 error
H	0 rejected	false positives type-1 error	true positives

イロト 不得 トイヨト イヨト 二日

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- ▶ In GWAS we perform $S = 10^6$ tests
- At $\alpha = 0.01$ we would expect 10000 type-1 errors!
- ► Probability of at least 1 type-1 error is $1 (1 \alpha)^S \rightarrow 1$.
- Individual P-values < 0.01 are not significant anymore.

	\mathcal{H}_0 holds	$\mid \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Linear models for GWAS I

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S = 10^6$ tests
- At $\alpha = 0.01$ we would expect 10000 type-1 errors!
- ► Probability of at least 1 type-1 error is $1 (1 \alpha)^S \rightarrow 1$.
- Individual *P*-values < 0.01 are not significant anymore.

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Multiple Hypothesis Testing Motivation

- Significance level α equals probability of type-1 error.
- In GWAS we perform $S = 10^6$ tests
- At $\alpha = 0.01$ we would expect 10000 type-1 errors!
- ► Probability of at least 1 type-1 error is $1 (1 \alpha)^S \rightarrow 1$.
- Individual *P*-values < 0.01 are not significant anymore.

Need to correct for multiple hypothesis testing!

	\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Linear models for GWAS I

October 15th 2012 41

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

Probability of at least one type-1 error.

- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{2}$ significant.

Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

- Probability of at least one type-1 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{g}$ significant.

Bounds the FWER 1 − (1 − α/S)^S by α

	\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

- Probability of at least one type-1 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの October 15th 2012

42

Linear models for GWAS I

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

- Probability of at least one type-1 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- ▶ Bounds the FWER $1 (1 \alpha/S)^S$ by α

	\mathcal{H}_0 holds	\mathcal{H}_0 doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Multiple Hypothesis Testing Family-Wise Error Rate (FWER)

- Probability of at least one type-1 error.
- Correct by bounding the FWER.
- Bonferroni correction: $P_B = P \cdot S$
- Equivalently $P < \frac{\alpha}{S}$ significant.
- Bounds the FWER $1 (1 \alpha/S)^S$ by α

	\mathcal{H}_0 holds	$ \mathcal{H}_0$ doesn't hold
\mathcal{H}_0 accepted	true negatives	false negatives type-2 error
\mathcal{H}_0 rejected	false positives type-1 error	true positives

Outline

Introduction

Why QTL mapping Terminology & background Methodological challenges

Linear Regression

Hypothesis Testing

Multiple Hypothesis Testing

Model Checking

C. Lippert

Linear models for GWAS I

October 15^{th} 2012

Model Checking

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

(日) (同) (三) (三)

Model Checking

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

(日) (同) (三) (三)

Model Checking

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

(日) (同) (三) (三)

C. Lippert
Model Checking

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

(日) (同) (三) (三)

Model Checking

- Do my estimated P-values match the true null distribution?
 - By definition uniformly distributed under null distribution.
- Do the empirical results match my assumptions on the null model?
- ► In GWAS we perform a large number of tests. (usually in the order of 10⁶)
- Use the strong prior knowledge that in GWAS almost all of the test SNPs have no effect on the phenotype.
- Empirical test statistics should follow the null distribution

(日) (同) (三) (三)

Model Checking QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statisitcs against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

イロト イポト イヨト イヨト

Model Checking QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

Sort test statistics

 Plot test statisitcs against (y-axis) quantiles of the theoretical null-distribution (x-axis)

• for example: 2LR vs. χ_1^2

- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

イロト 不得下 イヨト イヨト 二日

Model Checking QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statisitcs against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Linear models for GWAS I

Model Checking QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statisitcs against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Linear models for GWAS I

Model Checking QQ-plot

Compare quantiles of the empirical test statistic distribution to assumed null distribution.

- Sort test statistics
- Plot test statisitcs against (y-axis) quantiles of the theoretical null-distribution (x-axis)
 - for example: 2LR vs. χ_1^2
- If the plot is close to the diagonal, the distributions match up
- Deviation from the diagonal indicates inflation or deflation of test statistics.

Summary

Introduction

Genetics terminology

- Study design
- Data preparation

Challenges and pitfalls

- Power
- Multiple hypothesis testing
- Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

・ロト ・聞ト ・ヨト ・ヨト

Summary

Introduction

- Genetics terminology
- Study design
- Data preparation

Challenges and pitfalls

- Power
- Multiple hypothesis testing
- Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

(日) (同) (日) (日) (日)

Summary

- Introduction
 - Genetics terminology
 - Study design
 - Data preparation
- Challenges and pitfalls
 - Power
 - Multiple hypothesis testing
 - Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

Linear models for GWAS I

イロン イロン イヨン イヨン 三日

October 15th 2012

Summary

- Introduction
 - Genetics terminology
 - Study design
 - Data preparation
- Challenges and pitfalls
 - Power
 - Multiple hypothesis testing
 - Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

Linear models for GWAS I

イロト 不得下 イヨト イヨト 二日

October 15th 2012

Summary

- Introduction
 - Genetics terminology
 - Study design
 - Data preparation
- Challenges and pitfalls
 - Power
 - Multiple hypothesis testing
 - Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

Linear models for GWAS I

イロト 不得下 イヨト イヨト 二日

October 15^{th} 2012

Summary

- Introduction
 - Genetics terminology
 - Study design
 - Data preparation
- Challenges and pitfalls
 - Power
 - Multiple hypothesis testing
 - Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

イロト 不得下 イヨト イヨト 二日

Summary

- Introduction
 - Genetics terminology
 - Study design
 - Data preparation
- Challenges and pitfalls
 - Power
 - Multiple hypothesis testing
 - Population structure
- Linear regression for association studies.
- Hypothesis testing
- Multiple hypothesis testing correction.
- Model checking.

イロト 不得下 イヨト イヨト 二日

Acknowledgements

Joint course material O. Stegle

Why QTL mapping D. Weigel, K. Borgwardt

Linear models for GWAS I

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで October 15^{th} 2012

References I

- S. Atwell, Y. Huang, B. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, A. Tarone, T. Hu, et al. Genome-wide association study of 107 phenotypes in arabidopsis thaliana inbred lines. *Nature*, 465(7298):627–631, 2010.
- B. Browning and S. Browning. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. *The American Journal of Human Genetics*, 84(2):210–223, 2009.
- J. Cao, K. Schneeberger, S. Ossowski, T. Günther, S. Bender, J. Fitz, D. Koenig, C. Lanz, O. Stegle, C. Lippert, X. Wang, F. Ott, J. Müller, C. Alonso-Blanco, K. Borgwardt, K. Schmid, and D. Weigel. Whole-genome sequencing of multiple arabidopsis thaliana populations. Nature Genetics, 43(10):956–963, 10 2011. doi: 10.1038/ng.911.
- J. Spitzer. A primer on box-cox estimation. *The Review of Economics and Statistics*, 64(2): 307–313, 1982.
- G. Upton and I. Cook. Oxford dictionary of statistics, 2002.