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Overview

I Single marker association model with random effect term

y = xsβs︸︷︷︸
genetic effect

+ u︸︷︷︸
random effect covariates

+ ε︸︷︷︸
noise

I Shortcomings
I Weak effects are not captured by single-marker analysis.
I Complex traits are controlled by more than a single SNP.
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Multi locus models

I Generalization to multiple genetic factors

y =

S∑
s=1

xsβs︸ ︷︷ ︸
genetic effect

+ u︸︷︷︸
random effect covariates

+ ε︸︷︷︸
noise

I Challenge: N << S: explicit estimation of all βs is not feasible.
I Solutions

I Regularize βs (Ridge regression, LASSO)
I Variance component modeling

[Wu et al., 2011]
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Outline

Outline
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Variance component models

Outline

Variance component models

Variance component models for correlated traits

Mixed model Lasso
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Variance component models

Multi locus models
Random effect models

I For now, let’s drop the random effect term

y =

S∑
s=1

xsβs + ε.

I For mathematical convenience, we choose a shared Gaussian prior on
the weights and Gaussian noise

p(β1, . . . , βS) =

S∏
s=1

N
(
βs
∣∣ 0, σ2

g

)
p(ε) = N

(
ε
∣∣0, σ2

eI
)

I Marginalize out the weights β1, . . . , βS

p(y |X, σ2
g , σ

2
e ) =

∫
β
N
(
y

∣∣∣∣∣
S∑

s=1

xsβs, σ
2
eI

)
S∏

s=1

N
(
βs
∣∣ 0, σ2

g

)
dβ

= N
(
y

∣∣∣∣∣0, σ2
g

S∑
s=1

xsx
T
s + σ2

eI

)
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Variance component models

Multi locus models
Remarks

p(y |X, σ2
g , σ

2
e ) = N

(
y |0, σ2

g

S∑
s=1

ssx
T
s︸ ︷︷ ︸

Kg

+σ2
eI
)

(1)

I Kg genotype covariance matrix.
I Closely related to Kinship explaining population structure.

I Inference can be done my maximum likelihood.
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I The ratio of σ2g and σ2e defines the
narrow sense heritability of the trait

h =
σ2g

σ2g + σ2e
.
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Variance component models

Heritability
Heritability estimated on 107 A. thaliana phenotypes

Global genetic heritability

0.0 0.2 0.4 0.6 0.8 1.0
Heritability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
D

e
n
si

ty

C. Lippert & O. Stegle Linear models II: multi-locus models and variance decomposition September 2012 8



Variance component models

Heritability
Heritability estimated on 107 A. thaliana phenotypes

I Estimate can be
restricted to a
genomic region such
as a single
chromosome, etc.
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Variance component models

Window-based composite variance analysis
Region-based testing

I Just fitting a particular region ignores the genome-wide context

I Variance dissection with region-based separation

p(y |W ) = N (y |0, σ2w
∑
s∈W

xsx
T
s︸ ︷︷ ︸

Kw

+σ2g

∑
s 6∈W

xsx
T
s︸ ︷︷ ︸

Kg

+σ2eI)

I Explained variance components can be read off subject to suitable
normalization of the covariances Kw and Kg.

I “Local” heritability

h(W ) =
σ2w

σ2w + σ2g + σ2e
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Variance component models

Window-based composite variance analysis
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Variance component models

Window-based composite variance analysis
Significance testing

I Analogously to fixed effect testing, the significance of a specific
window can be tested.

I Likelihood-ratio statistics to score the relevance of a particular
genomic region W

LOD(W ) =
N
(
y
∣∣∣0, σ2w∑s∈W xsx

T
s + σ2g

∑
s 6∈W xsx

T
s + σ2eI

)
N
(
y
∣∣∣0, σ2g

∑
s 6∈W xsxT

s + σ2eI
)

I P-values can be obtained from permutation statistics or analytical
approximation (variants of score tests or likelihood ratio tests).
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Variance component models

Phenotype prediction
Best linear unbiased prediction

I Given the phenotype values of a set of individuals and the genetic
relatedness, we can predict the genetic component of the phenotype
of a new individual.

I P (y? |y) = N
(
y?
∣∣µ?, σ2gV?

g + σ2eI
)

I Predicitve mean: µ? = σ2gK
?,:
g

(
σ2gKg + σ2eI

)−1
y︸ ︷︷ ︸

BLUP

I Predictive Variance: V?
g = K?,?

g − σ2gK?,:
g

(
σ2gKg + σ2eI

)−1
K:,?
g
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Variance component models for correlated traits

Outline

Variance component models

Variance component models for correlated traits

Mixed model Lasso
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Variance component models for correlated traits

Overview

I Frequently, we are interested
in the genetic architecture of
related traits.

I Example: flowering time in
10C and 16C
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Variance component models for correlated traits

Multi-trait mixed models

I Extend variance component models to pairs of traits for environments
e ∈ {0, 1}

ye = µe︸︷︷︸
env effect

+

S∑
s=1

xsβs,e︸ ︷︷ ︸
genetic effects

+εe.

I Again, prior is shared across SNPs but environment specific

p(β1, . . . ,βS) =

S∏
s=1

N
(
βs

∣∣∣∣0, [σ2
g,0 ρ0,1
ρ0,1 σ2

g,1

])
genetic variance and correlation.

I One noise level per environment

ε0 ∼ N (0, σ2e,0I) ε1 ∼ N (0, σ2e,1I).
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Variance component models for correlated traits

Multi-trait mixed models
Marginalized multi trait variance component model

I Because of the Gaussian assumption, again noise and weights can be
marginalized out analytically

p
(
y0,y1 |X, σ2g,0, σ2g,1, . . .

)
=

N
([

y0

y1

] ∣∣∣∣µ0Iµ1I
,

[
σ2g,0Kg ρ0,1Kg

ρ0,1Kg σ2g,1Kg

]
+

[
σ2e,0I 0

0 σ2e,1I

])

As before, Kg =

S∑
s=1

xsx
T
s denotes the genotype covariance.
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Variance component models for correlated traits

Multi-trait mixed models
Illustration on two related A. thaliana traits

Independent single-marker GWAs on flowering time (10C and 16C)
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Variance component models for correlated traits

Multi-trait mixed models
Illustration on two related A. thaliana traits

Mixed model inference

I Genotype covariance(
σ2g,0 = 0.2 σ0,1 = 0.33

σ0,1 = 0.33 σ2g,1 = 0.92

)
I Noise covariance(

σ2e,0 = 0.03 0

0 = 0.33 σ2e,1 = 0.02

)
I Marginal heritabilities from

joint analysis

h0 = 0.88 h1 = 0.95
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Variance component models for correlated traits

Multi-trait mixed models

I Multi-trait models can be used to control for population structure in a
multi-environment setting

I Common association test affecting both traits

N
([

y0

y1

]
|
[
µ0I
µ1I

]
︸ ︷︷ ︸

env effect

+

[
xs

xs

]
βs︸ ︷︷ ︸

SNP effect

,KGxE

)
.

I Interaction test, specific for one environment

N
([

y0

y1

]
|
[
µ0I
µ1I

]
︸ ︷︷ ︸

env effect

+

[
xs

xs

]
βs︸ ︷︷ ︸

SNP effect

+

[
xs

0

]
βI
s︸ ︷︷ ︸

GxE effect

,KGxE

)
.

where KGxE =

[
σ2
g,0Kg ρ0,1Kg

ρ0,1Kg σ2
g,1Kg

]
+

[
σ2
e,0I 0
0 σ2

e,1I

]
[Korte et al., 2012]
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Variance component models for correlated traits

Common effect mapping on two traits
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Mixed model Lasso

Outline

Variance component models

Variance component models for correlated traits

Mixed model Lasso
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Mixed model Lasso

Simultaneous Analysis of all SNPs: LassoTibshirani [1996]

10 5 0 5 10
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y = Xβ + ε,

β ∼ p(β|λ), p(β|λ) ∝
∏

e−λ|βi|

ε ∼ N (0, σ2eI)
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GWAS for Flowering Time in Arabidopsis thaliana

I Linear Model

I Lasso
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Linear Mixed Models

y = xβ + u+ ε,

u ∼ N (0, σ2gK)

ε ∼ N (0, σ2eI)

I Kinship Matrix K: measures
genetic similarity between pairs
of samples
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Linear Mixed Models

y = xβ + u+ ε,

Integrating over the random effects
yields:∫

u
N
(
y|xsβs + u;σ2eI

)
N
(
u|0;σ2gK

)
du

= N
(
y|xsβs;σ2gK+ σ2eI

)
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LMM-Lasso

y = Xβ + u+ ε,

β ∼ p(β|λ), p(β|λ) ∝
∏

e−λ|βi|

u ∼ N (0, σ2gK)

ε ∼ N (0, σ2eI)

[Rakitsch et al., 2012]
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Inference

Minimize the objective:

− logN
(
y|Xβ;σ2gK+ σ2eI

)
+ λ‖β‖1

Algorithm:

1. Fix δ = σ2e/σ
2
g on the null model:

− logN
(
y|0;σ2g (K+ δI)

)
= − logN

(
y|0;σ2g (USUT + δI)

)
= − logN

(
UTy|0;σ2g (S+ δI)

)
=

1

σ2g
(UTy)T(S+ δI)−1(UTy)
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Inference (continued)

Minimize the objective:

− logN
(
y|Xβ;σ2g(K+ δI)

)
+ λ‖β‖1

Algorithm:

2. Train β:

argminβ (y −Xβ)T (σ2g(K+ δI))−1(y −Xβ) + λ‖β‖1
= argminβ

1

σ2g
(y −Xβ)T (USUT + δI)−1(y −Xβ) + λ‖β‖1

= argminβ

1

σ2g
(ỹ − X̃β)T (ỹ − X̃β) + λ‖β‖1,

where

X̃ = (S+ δI)−
1
2UTX

ỹ = (S+ δI)−
1
2UTy
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GWAS for Flowering Time in Arabidopsis thaliana

I Linear Mixed Model

I LMM - Lasso
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Power comparison

I Power comparison on
semi-empirical data

I LASSO models
perform better than
univariate testing.

I Combining mixed
models with LASSO
outperforms other
models.

(a) Precision/Recall (b) ROC
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Detection of multiple linked causal variants.pdf

I Two causal variants in
linkage

I LMM-Lasso better
differentiates LD from
genetic heterogeneity.

(a) Linear Model

(b) Linear Mixed Model

(c) Lasso

(d) LMM-Lasso

Figure 3
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Phenotype prediction with the LMM-Lasso

I Given the phenotype values of a set of individuals and the genetic
relatedness, we can predict the genetic component of the phenotype
of a new individual.

I P (y? |y) = N
(
y?
∣∣µ?, σ2gV? + σ2eI

)
I Predicitve mean: µ? = X?β︸︷︷︸

LASSO component

+K?,: (K+ δI)−1 (y −Xβ)︸ ︷︷ ︸
BLUP component

I Predictive Variance: V? = K?,? −K?,: (K+ δI)−1K:,?
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Phenotype prediction with the LMM-Lasso

I Out of sample prediction
on FT in A. thaliana

Figure 5
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Phenotype prediction with the LMM-Lasso
Summary on a compendium of phenotypes

I Out of sample
predictions on A.
thaliana and mouse.

(a) Arabidopsis test variance (b) Mouse test variance

(c) Arabidopsis number of SNPs (d) Mouse number of SNPs
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Summary

I Joint modeling of multiple SNPs is compromised by sample size.

I Solutions: shrinkage (LASSO) or marginalization.

I Variance component models allow for estimating the proportion of
genetic variance.

I Genetic co-regulation causes phenotype correlation which can be
incorporated into variance component models.

I Shrinkage-based LASSO models and variance component modeling
can be combined, significantly improving phenotype prediction.
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