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Motivation

Models of molecular variation
eQTL

Statistical challenges:

I Large-scale
(N << p regime)

I Millions of tests

I Limited power

Bioinformatics challenges:

I Phenotyping

I Using NGS technologies
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Motivation

Models of molecular variation
eQTL

Statistical challenges:

I Large-scale
(N << p regime)

I Millions of tests

I Limited power

Bioinformatics challenges:

I Phenotyping

I Using NGS technologies
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Accounting for confounding variation in molecular studies

Outline

Motivation

Accounting for background variation in eQTL studies

Mechanistic models: Genetic analyses with learnt cellular features

The role of GxE in the A. thaliana transcriptional landscape

Summary
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Accounting for confounding variation in molecular studies

Models of molecular variation
Univariate phenotypes, examples

I Single-marker mapping using linear models:

yg = xsβs,g︸ ︷︷ ︸
genetic

+ u︸︷︷︸
background

+ εg︸︷︷︸
noise

I SNPs n can either be proximal or distal to gene g
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Accounting for confounding variation in molecular studies

Known and unknown confounding in genomic analyses

I Standard to model known
factors

I Population background
I Gender

I It is key to account for
unknown hidden factors as well

I Sample preparation
I Sample history
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[Leek and Storey, 2007]
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Accounting for confounding variation in molecular studies

Example, Human

(a) Standard 

(b) VBFA
accounting for 
hidden factors
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Accounting for confounding variation in molecular studies

Association model
PEER: accounting for hidden factors

I Start with standard association model.

I Include (few) global hidden factors (confounders) in the model.

I Factors H = {h1, . . . ,hK} need to be learnt from the expression
data.

I Controlling model complexity using hierarchical Bayesian modeling.

p(wg,k, αk) = N
(
wg,k

∣∣∣∣ 0, 1

αk

)
Γ(αk | ak, bk)

yng =

genetic︷ ︸︸ ︷
(xnsβs,g)

+ fnvg︸ ︷︷ ︸
known factors

+ εng︸︷︷︸
noise

[Stegle et al., 2010]
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Accounting for confounding variation in molecular studies

Use cases

[Stegle et al., 2010]

I Increased power

I Similarly on yeast, mouse, A. thaliana

C. Lippert & O. Stegle Mapping high dimensional traits September 2012 10



Accounting for confounding variation in molecular studies

Use cases

(a) Yeast cis eQTLs (b) Mouse cis eQTLs (c) Human cis eQTLs

[Stegle et al., 2010]

I Increased power

I Similarly on yeast, mouse, A. thaliana
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Accounting for confounding variation in molecular studies

Mixed model implementation

yg = xsβs,g︸ ︷︷ ︸
SNP effect

+ vU︸︷︷︸
covariates

+ Hwg︸ ︷︷ ︸
unknown confounding

+εg

I Exploit large number of expression traits to estimate the empirical
covariance structure.

I Iterative learning on the covariance structure induced by all traits.

1. Learn confounders, explaining broad covariance within expression
profiles.

2. Test for genetic (SNP) control of learnt confounders.
3. Add relevant SNPs to the covariance structure.

I Add known confounding, e.g. population structure.

I Derive confounding covariance structure Σ for association testing.
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Accounting for confounding variation in molecular studies

Mixed model implementation

N

N N

K
K

N

Gene expression hidden confounders noise

I Exploit large number of expression traits to estimate the empirical
covariance structure.

I Iterative learning on the covariance structure induced by all traits.
1. Learn confounders, explaining broad covariance within expression

profiles.
2. Test for genetic (SNP) control of learnt confounders.
3. Add relevant SNPs to the covariance structure.

I Add known confounding, e.g. population structure.
I Derive confounding covariance structure Σ for association testing.

[Fusi et al., 2012]
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Accounting for confounding variation in molecular studies

Mixed model implementation

N

N

Gene expression hidden confounders noisemaster regulators
S

S

N

N

population structure

N

K
K

N

I Formally, the expression levels are independent given genotype, hidden
factors and population structure.

P (Y |X,H, ) =
G∏

g=1

N
(

y:,g

∣∣∣∣∣0, σ2
g

S∑
s=1

xsx
T
s + σ2

h

K∑
k=1

hkhT
k + Kpop + σ2

eI

)
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Accounting for confounding variation in molecular studies

Mixed model implementation
Testing strategies

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

phenotype

SNPs

yyyyy

di
st

an
ce

β

� N β ;y

X

X

X

C
C
C
T
T
T

population structure
hidden confounding

I Mixed model likelihood ratio

LODg,s = log
N
(
yg

∣∣xsβs,g, σ
2
gΣ + σ2eI

)
N
(
yg

∣∣0 , σ2gΣ + σ2eI
)
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Accounting for confounding variation in molecular studies

Use cases

Standard

[Fusi et al., 2012]

I Increased power

I Improved consistency between studies

I Better calibrated test statistics

CIS
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Accounting for confounding variation in molecular studies

Summary

I Accounting for hidden factors can greatly increase the power and
meaningfulness of analysis results.

I Open source PEER software package (Python, R, C++) [Stegle et al., 2012]

[Stegle et al., 2012]

I 1000 Genomes project
A map of human genome variation from population-scale sequencing Nature (Nature, 1000 genomes consortium 2010)

I HapMap III expression analysis
Patterns of Cis Regulatory Variation in Diverse Human Populations, PLoS Genet 2012

I Genome and transcriptome variation in Arabidopsis
Multiple reference genomes and transcriptomes for Arabidopsis (Nature, Gan? & Stegle? et al. 2011)
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Genetic analysis of learnt cellular features

Outline

Motivation

Accounting for background variation in eQTL studies

Mechanistic models: Genetic analyses with learnt cellular features

The role of GxE in the A. thaliana transcriptional landscape

Summary
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Genetic analysis of learnt cellular features

Regulatory and external factors

I Confounding factors

y
n
g =

genetic︷ ︸︸ ︷
bn,g

(
x
n
s θn,g

)
+ f

n
vg︸ ︷︷ ︸

known factors

+ h
n
wg︸ ︷︷ ︸

hidden factors

+ ε
n
g︸︷︷︸

noise

.

I Account for regulatory factors in
transcription?

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

mRNA

proteins

translation

transcription

DNA
experimental procedures
environment
sample history

confounders/environment

observedhidden

organ-level ...
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Genetic analysis of learnt cellular features

Regulatory factors

I Regulatory factors:
I Transcription factors
I Pathway components

I Mechanistic hypothesis:
regulatory factors mediate the
association signals to target
genes.

I Measuring T?
I Difficult and expensive

I Learn the unobserved factors T

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

mRNA

proteins

translation

transcription

DNA
experimental procedures
environment
sample history

confounders/environment

observedhidden

organ-level ...

[Parts et al., 2011, Lee and Bussemaker, 2010]
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ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

mRNA

proteins

translation

transcription

DNA
experimental procedures
environment
sample history

confounders/environment

observedhidden

organ-level ...

[Parts et al., 2011, Lee and Bussemaker, 2010]
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Genetic analysis of learnt cellular features

Regulatory factors
A linear model of gene regulation

I Inference of regulatory factors:

YJ·G︸ ︷︷ ︸
Expr.

= TJ·K︸ ︷︷ ︸
Factors

·WK·G︸ ︷︷ ︸
Weights

+ ΨJ·G︸ ︷︷ ︸
Noise

.

I W is sparse; each factor
regulates a specific subset of
all genes.

I Incorporation of prior knowledge
to render factors interpretable:

I Transcription factor binding.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

mRNA

proteins

translation
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I W is sparse; each factor
regulates a specific subset of
all genes.

I Incorporation of prior knowledge
to render factors interpretable:

I Transcription factor binding.

gene: YJL213W

TF: PHO4

ATGACCTGAAACTGGGCGGATGACGTGGAACGGTATGACCTGAAACTGGGGGACTGACGTGGAACGGTATGACCTGAAACT

Promoter
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Genetic analysis of learnt cellular features

Sparse factor analysis
Probabilistic model

I Graphical model Y = T ·W + Ψ.
I Indicators zg,k determine the

sparsity pattern:

P (wg,k | zg,k = 0) = N
(
wg,k

∣∣ 0, σ2
0

)
P (wg,k | zg,k = 1) = N

(
wg,k

∣∣ 0, σ2
1

)
.
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Genetic analysis of learnt cellular features

Sparse factor analysis
Probabilistic model
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Genetic analysis of learnt cellular features

Application to yeast
Factor associations

I Application to 108 yeast strains.
I Genotyped and expression profiled

in 2 conditions.
I Prior knowledge: TF binding

affinities.

I Biological hypotheses

1. Genetic variation (SNPs) may
regulate factor activations.

2. Genotype-specific regulation of
target genes.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs

mRNA

proteins

translation

transcription

DNA
experimental procedures
environment
sample history

confounders/environment

observedhidden

organ-level ...

[Smith and Kruglyak, 2008]
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Genetic analysis of learnt cellular features

Application to yeast
Factor interactions

I Example of genotype-specific factor regulation.

[Parts et al., 2011]
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Genetic analysis of learnt cellular features

Application to yeast
Factor interactions

I Genome-wide interaction density.
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[Parts et al., 2011]
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Genetic analysis of learnt cellular features

Summary

I Accounting for hidden factors can greatly increase the power and
meaningfulness of analysis results.

I Joint genetic analysis of cellular features and gene expression for improved
interpretability.

I Open source PEER software package (Python, R, C++)
http://github.com/PMBio/peer

[Stegle et al., 2012]
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The role of GxE in the A. thaliana transcriptional landscape

Outline

Motivation

Accounting for background variation in eQTL studies

Mechanistic models: Genetic analyses with learnt cellular features

The role of GxE in the A. thaliana transcriptional landscape

Summary
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The role of GxE in the A. thaliana transcriptional landscape

Swedish lines

I 160 Lines, extensive population
structure

I Genome sequencing

I Transcriptome sequencing

I Bisulfite sequencing

I Two environments; 10C and 16C
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The role of GxE in the A. thaliana transcriptional landscape

Variance component analysis
A random effect variance estimation model

I Variance dissection of expression levels of gene g in environment
e = {0, 1}

yg,e = µe︸︷︷︸
env effect

+

Ncis∑
n=1

bn,esn︸ ︷︷ ︸
cis genetics

+

Ltrans∑
l=1

dl,esl︸ ︷︷ ︸
trans genetics

+ψg,e.

I Standard multi trait correlation model
I cis & trans genotype prior:

bn ∼ N
(

0,

[
β2
0 β0,1

β0,1 β2
1

])
dn ∼ N

(
0,

[
δ20 δ0,1
δ0,1 δ21

])
I Uncorrelated noise covariance

ψg ∼ N
(

0,

[
σ2
0 0

0 σ2
1

]
⊗ I

)
.
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The role of GxE in the A. thaliana transcriptional landscape

Variance component analysis
Observational model needs to acknowledge count statistics

I The observed quantities are read counts cg,e and not true expression
levels

I Log-normal model on the Poisson rates
I MCMC inference
I Approximate Bayesian inference
I Variance stabilizing transform (Anscombe transform)

p(cg,e |C(θ)) = N (yg,e |0,C(θ))

J∏
j=1

Poisson(cg,e,j | eyg,e,j )︸ ︷︷ ︸
Poisson observation model

≈ N (yg,e |0,C(θ))

J∏
j=1

N
(
yg,e,j

∣∣µg,e,j , σ
2
g,e,j

)︸ ︷︷ ︸
Gaussian approximation
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The role of GxE in the A. thaliana transcriptional landscape

Variance component analysis
Impact of environment

I Environment
greatly affects
heritability

I Absolute
environment
contribution
small
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The role of GxE in the A. thaliana transcriptional landscape

Variance component analysis
Impact of environment

I Environment
greatly affects
heritability

I Absolute
environment
contribution
small

env
4.6

cis

21.3

trans

14.1cisGxE
4.6

TransGxE
16.9

unexplained

38.5

(Average across upper 50% quantile of heritable genes)
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The role of GxE in the A. thaliana transcriptional landscape

GWAS
main effects
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The role of GxE in the A. thaliana transcriptional landscape

GWAS
GxE effects

C. Lippert & O. Stegle Mapping high dimensional traits September 2012 30



The role of GxE in the A. thaliana transcriptional landscape

GWAS
GxE effects

env
4.6

cis

21.3

trans

14.1cisGxE
4.6

TransGxE
16.9

unexplained

38.5

I Lack of power to detect GxE?

I GxE largely aligned with population structure?
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Summary

Outline

Motivation

Accounting for background variation in eQTL studies

Mechanistic models: Genetic analyses with learnt cellular features

The role of GxE in the A. thaliana transcriptional landscape

Summary
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Summary

Summary

1. eQTL mapping is sensitive to background signals
I co-factors
I population structure
I “hidden confounding”
I Leverage on high dimensionality of gene expression

2. Mechanistic models in eQTL
I Intermediate molecular traits can be measured or learnt from data.

3. Analysis of variance is well applicable for NGS data
I GxE explains substantial variance, however is difficult to map
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Summary
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