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Time table

I 09:10–09:20 Welcome

I 09:20–10:00 Introduction and background

I 10:00–10:30 Linear models I

I 10:30–11:00 Coffee break

I 11:00–11:30 Linear models I contd.

I 11:30–11:45 Demonstrations I

I 11:45–12:15 Linear models II

I 12:15–13:30 Lunch

I 13:30–14:00 Linear models II contd.

I 14:00–14:30 Advanced mixed models

I 14:30–15:00 Demonstrations II

I 15:00–15:30 Coffee break

I 15:30–16:15 High-dimensional traits, gene expression

I 16:15–17:00 Discussion, questions, etc.
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Why QTL mapping

Genotype to phenotype mapping

Given:

I Genotype for multiple
individuals

I Single nucleotide
polymorphisms (SNPs),
microsatelite markers

I Quantitative traits
(phenotypes) for the same
individuals

I disease, height,
gene-expression, . . .

study rice (see the International Rice Functional Genomics Consortium, 
http://irfgc.irri.org).

As was the case for the International HapMap Project in humans, 
many approaches used for the study of A. thaliana and rice have already 
been rendered obsolete by technical advances. Future efforts to uncover 
SNPs will use next-generation sequencing approaches (such as Illumina’s 
sequencing technology and Applied Biosystems’s SOLiD System, which 
are already commercially available) rather than the microarray-hybrid-
ization technology that was used to construct the first-generation haplo-
type maps of A. thaliana15 and rice, a technology that was more costly and 
less precise than newer approaches and was highly biased. In addition, 
rapidly decreasing costs mean that sophisticated schemes that have been 
used to select the most informative SNPs for genotyping are increasingly 
becoming irrelevant. By the time that researchers had determined that 
140,000 tag SNPs (a subset of informative SNPs) would suffice to cover 
the A. thaliana genome, there was no economic reason not to genotype 
all 250,000 known high-quality SNPs that were not singletons (which 
are SNPs that have been detected only in single individuals and whose 
predictive power for other SNPs is therefore unknown)16.

The importance of population structure
What, therefore, is the prospect of pinpointing individual genes with 
GWA approaches? It is well known that demography affects linkage dis-
equilibrium. One example is that there is more linkage disequilibrium 
in Europeans than in Africans, reflecting humanity’s African origins12,13. 
Another is that for wild A. thaliana, linkage disequilibrium is more 
extensive in North America than in Europe, consistent with the plant 
having been introduced into North America only after Europeans set-
tled there14,16. In both cases, the probable explanation is that there was 
a bottleneck in colonization, with recombination not yet having had 
enough time to whittle down linkage disequilibrium among the alleles 
present on the limited number of founder chromosomes.

It is perhaps not as widely recognized that, in the presence of popu-
lation structure, the genetic architecture of a trait in a sample of indi-
viduals depends on how the sample was assembled. For example, GWA 
mapping immediately reveals the importance of the gene FRIGIDA in 
the variation in flowering time among A. thaliana strains from the north-
western parts of continental Europe (where common loss-of-function 
alleles are an important determinant of early flowering) but not from 
central Asia (where no single loss-of-function allele is particularly fre-
quent17). If variation in a trait is caused by numerous alleles of a single 
gene (as opposed to a small number of frequently occurring alleles), then 
researchers carrying out a GWA scan using global samples run the risk of 
conclu ding that there is no major locus for this trait (Fig. 2). This is essen-
tially another facet of the problem with population structure that was 
mentioned earlier: the importance of a particular allele always depends 
on the reference population, and it is far from clear which population is 
meaningful from an evolutionary perspective.

Much attention has been given to population structure being a strong 
confounding factor in association studies, especially for traits that are 
important in local adaptation (such as flowering time in plants or skin 
colour in humans). Studies of maize and A. thaliana18–22 have been 
at the forefront of identifying this problem and indicating statistical 
solutions. Application of one of these strategies20 has already led to the 
identification of a major locus in maize that controls concentrations of 
pro vitamin A — an important trait, particularly for people with limited 
access to a diverse diet23.

Combining association mapping and linkage mapping
A clear solution to the problem posed by population structure is to com-
plement GWA studies of natural populations with linkage mapping of 
experimental populations, taking advantage of the increased resolution 
of the former and the robustness to confounding of the latter, a strategy 
that has been successfully applied to A. thaliana11,22,24. When studying 
human genetics, however, controlled crosses are not possible, so the solu-
tion is to use the transmission-disequilibrium test (TDT)25, which uses 
the transmission of alleles from parents to offspring to verify linkage.

For maize, by contrast, Ed Buckler and colleagues have pioneered a 
distinct approach, which is called nested association mapping26. GWA 
studies such as those underway in humans and A. thaliana would, at 
least for the next couple of years, be prohibitively expensive in maize, 
because its genome is larger than that of humans, is more polymorphic 
and has less-extensive linkage disequilibrium. Instead, 5,000 recom-
binant inbred lines (RILs) have been derived from separate crosses of 
a common standard genotype with 25 genetically diverse lines. The 
founder lines will be sequenced, whereas the RILs will be genotyped 
only with sufficient density to identify the ancestral founder at each 
point in the genome, resulting in a haplotype map that is essentially 
complete for each of the 5,000 RILs. Because crossing over during RIL 
formation is limited, such mapping can be accomplished with relatively 
high accuracy by using a moderate number of markers26. This mapping 
approach is conceptually similar to those applied to a heterogeneous 
stock of laboratory mice27 or the Collaborative Cross28 (a resource that 
is being generated with the aim of obtaining 1,000 RILs from eight 
standard mouse strains) (see page 724).

The nested-association-mapping design therefore, in effect, relies on 
the experimental crosses to map genes — without the confounding effects 
of population structure — to only a few, but still relatively large, genomic 
regions. Within these mapping intervals, allele sharing across the founder 
lines is exploited to achieve the resolution of GWA mapping. It is easy to 
see how this strategy could be applied to A. thaliana by the appropriate 
selection of subsets of lines from the many available RIL populations.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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Goal:

I Identify causal loci that explain phenotypic differences.
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Why QTL mapping

Use of GWAs in plant systems

I Basic biology
I Understand the makeup

of molecular pathways
I Dissect the genetic

component of natural
variation.

I Genotype-environment
interactions

I Breeding
I Mine for markers causal

for phenotype to assist in
breeding decisions.

I Maximization of yield,
pathogene resistance, etc.
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Figure 1 | GWA mapping is ineffective if there is strong genetic 
differentiation between subpopulations (that is, if there is structure in the 
population). In this example, two subpopulations of plants are depicted, 
one tall and one short (as illustrated and indicated by the numerical 
measurement), together with a schema of the genotype of each plant. The 
presence of red alleles increases the height of a plant, whereas blue alleles 
decrease the height; one locus has a major effect, and two have a minor 
effect. The many background markers (orange and green) are mostly 
exclusive to a specific subpopulation but are also strongly associated with 
height, even though they are not causal. By crossing the plants (shaded 
area) and generating an experimental population of F2 generation or 
recombinant inbred lines, any linkage disequilibrium between background 
markers and causal markers is broken up, and the causal loci can then easily 
be mapped, albeit with relatively poor resolution.
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Why QTL mapping

Personalized medicine & health

I Adapting treatment to the patients
genetic make-up.

I Targeting patients who can benefit.
I Appropriate dosage of a drug by using

genetic variants to understand drug
metabolism (e.g., anti-depressants,
beta blockers, opioid analgesics).

I Disease subcategorization

I Risk prediction
I Known causal variants help to identify

individuals with higher risk to develop
a particular disease.

I Improved monitoring of high-risk
groups.
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Terminology & background

Some definitions

I Genotype denotes the genetic state
of an individual.

I Denoted by xn for individual
n.

I Phenotype denotes the state of a
trait of an individual.

I Denoted by yn for individual
n.

I A locus is a position or limited
region in the genome.

I Denoted by xs for locus (or
SNP) s.

I An allele is the genetic state of a
locus.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

SNPs
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Terminology & background

More definitions

I An organism/cell is haploid if it
only has one chromosome set or
identical chromosome sets.

I e.g. A. thaliana, sperm cells
or inbred lab strains

I An organism/cell is diploid if it has
two separately inherited
homologous chromosomes.

I e.g. human

I An organism/cell is polyploid if it
has more than two homologous
chromosomes.

I e.g. sugar cane is hexaploid.

image source: Wikipedia
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Terminology & background

Even more definitions

I Haplotype denotes an individual’s
state of a single set of
chromosomes (paternal or
maternal).

I A locus is homozygous if the
paternal and maternal haplotypes
are identical.

I A locus is heterozygous if it differs
between paternal and maternal
haplotypes.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

A/A
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Terminology & background

Statistical association

Association is any relationship
between two measured quantities
that renders them statistically
dependent.

I Direct association
I Indirect association

I Can be beneficial
e.g.: Linkage

I Can be harmful
e.g.: Population structure

correlation

statistical
dependence

[Upton and Cook, 2002]
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Terminology & background

Result
Example GWAS on A. thaliana

I Phenotype: Flowering time
at 10 degrees

I Test every SNP in the
genome for association with
floweringtime

I Position vs. Log10(P-value)
(Manhattan plot)

[Atwell et al., 2010]
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Terminology & background

Genetic designs

I Natural population
I Global sampling of plants,

human or animals.
I Samples may exhibit

varying degrees of
relatedness.

I Typically diploid.

I Inbred F2 crosses
I Mapping of the differences

of founder strains
I Plant- and animal systems
I No relatedness
I Typically haploid.

I Multi-parent crosses
I Increased genetic diversity
I No relatedness
I Typically haploid.
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Terminology & background

Genetic designs
Genotype encoding

A simple encoding scheme,
ignoring dominance:

I A locus is heterozygous if it
differs between paternal and
maternal haplotypes.

I heterozygous allele usually
encoded as 1

I A locus is homozygous if it
matches between paternal
and maternal haplotypes.

I homozygous major allele
usually encoded as 0

I homozygous minor allele
usually encoded as 2

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
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Terminology & background

Linkage Disequilibrium
Physical linkage

I Recombination causes linkage
between loci.

I Linkage is not uniform along
the chromosome.

I Recombination hotspots on the
chromosome lead to conserved
haplotype blocks in strong
linkage.

I Linkage can be used to chose
tag-SNPs to cover all linked
regions.

I Tradeoff between
resolution and genotyping
cost.

image source: Wikipedia
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Terminology & background

Phenotypes

I Binary
I case, control

I Continuous
I Gaussian
I Non-Gaussian

I Multivariate

I Other

I e.g. disease status

I height

I survival time, cell counts

I gene-expression

I Images, videos
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Terminology & background

Preprocessing
Genotype

I Imputation of missing values

I Hidden Markov Models
and related approaches

I Beagle, IMPUTE

I In GWAS based on full
sequencing data, some
alleles may be rare or even
private.

I Model designs need to be
adapted

I Rare variances filtered out
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Genotype imputation accuracy from

SNP-chip to 80Genomes reference

panel [Cao et al., 2011].

[Browning and Browning, 2009]
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and related approaches
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I In GWAS based on full
sequencing data, some
alleles may be rare or even
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Minor allele frequency from 160 A. thaliana lines; 2.3

million genome-wide SNPs from NGS sequencing

[Browning and Browning, 2009]
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Terminology & background

Preprocessing
Phenotype

I Most parametric models are
based on Gaussianity
assumptions

I Phenotype residuals are
often non-Gaussian

I Phenotype transformation
on suitable scale

I Use of prior knowledge
I Growth rates,

generation doubling
time, etc.

I Variance stabilization
I Box-Cox transformation

Raw and Box-Cox transformed flowering phenotypes at

10C [Atwell et al., 2010].

[Spitzer, 1982]
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Terminology & background

Linkage Disequilibrium
Gametic Phase Disequilibrium

I Association between two
loci.

I Deviation from random
co-inheritance between loci.

I LD can be caused by
recombination, population
structure, epistasis

I Measures of LD between
two loci x1 and x2 are D
and r2.

I D = fAA − f.AfA..

I r2 =
D2

fAAfABfBAfBB

I D 6= 0 and r2 6= 0 are
indicators of LD.

x1

A1 A2

B2

x2 = A2 x2 = B2

x1 = A1 fAA fAB fA.
x1 = B1 fBA fBB fB.

f.A f.B
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Methodological challenges

Challenges
Multiple hypothesis testing

I In GWAS, the number of
statistical tests commonly is on
the order of 106.

I At significane level of 0.01 we
would expect 10,000 false
positives

I Thus, individual P-values
< 0.01 are not significant
anymore.

I Correction for multiple
hypothesis testing is critical!
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Methodological challenges

Challenges
Population structure

I Confounding structure leads
to false positives.

I Population structure
I Family structure
I Cryptic relatedness

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
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Methodological challenges

Challenges
Population structure

I GWA on inflammatory bowel
disease (WTCCC)

I 3.4k cases, 11.9k controls
I Methods

I Linear regression
I Likelihood ratio test
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Methodological challenges

Challenges
Background variation and confounding

I Genotype is not the sole
cause of phenotype
variability

I Environment (known and
unknown)

I Covariates
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Methodological challenges

Challenges
Statistical power and resolution

I Small number of samples, large number of
hypotheses

I Rare variants

I Small effect sizes

I Complex phenotypes have multiple
regulators

I Increase power by

I Conditioning on known effects
I Testing compound hypotheses (e.g.

test all (rare) variants in a window)
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Methodological challenges

Challenges
Non-independent traits

I Measured expression levels for thousands of
genes

I Growth related phenotypes

I e.g. weight, BMI

I Increase power by exploiting phenotype
correlations

I Use correlations to estimate hidden
common causes
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Tutorial outline & resources
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Why QTL mapping
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Tutorial outline & resources

Topics covered

I Linear models 1
I Significance testing, multiple hypothesis correction, correction for

population structure

I Linear models 2
I Composite variance analysis, multi-trait models, phenotype prediction,

LASSO

I Advanced topics
I Improved linear mixed models
I Association mapping of high-dimensional traits

I Practical demonstations and demos to take away

I Opportunities for open discussion, questions and scientific exchange
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Tutorial outline & resources

Software used in examples
FaST-LMM

I Large-scale genome-wide association studies

I Command line tool

I Correction for population structure on up to 100k samples

I http://mscompbio.codeplex.com

[Lippert et al., 2011]
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Tutorial outline & resources

Software used in examples
Limix

I Efficient open source C++ toolbox for advanced GWAS analyses

I Modular python interface (R coming soon)

I Variance component estimation

I Complex covariance modeling

I Multi-trait models

I Latent variable models

I http://github.com/PMBio/limix
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Tutorial outline & resources

Resources

Datasets and resources used in this tutorial
I Wellcome Trust Case Control Consortium [Burton et al., 2007]

I Data access and details: http://www.wtccc.org.uk/.

I A. thliana GWAS on 107 phenotypes [Atwell et al., 2010]

I Data publicly available
https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb/

genomic-polymorphism-data-in-arabidopsis-thaliana

I eQTL datasets from yeast [Smith and Kruglyak, 2008]

I Data is also included in the examples of PEER [Stegle et al., 2012]

I Data download: http://www.nature.com/nprot/journal/v7/n3/
extref/nprot.2011.457-S1.zip
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