Overview and introduction

Christoph Lippert¹, Oliver Stegle²

 1 Microsoft Research, Los Angeles, USA 2 Max-Planck-Institutes Tübingen, Germany

Basel 09. September 2012

Research

- ▶ 09:10–09:20 Welcome
- ▶ 09:20–10:00 Introduction and background
- ▶ 10:00–10:30 Linear models I
- ▶ 10:30-11:00 **Coffee break**
- ▶ 11:00–11:30 Linear models I contd
- ▶ 11:30–11:45 Demonstrations
- ▶ 11:45–12:15 Linear models II
- ▶ 12:15–13:30 **Lunch**
- ▶ 13:30–14:00 Linear models II contd
- ▶ 14:00–14:30 Advanced mixed models
- ► 14:30–15:00 Demonstrations I
- ► 15:00–15:30 **Coffee break**
- ▶ 15:30–16:15 High-dimensional traits, gene expression
- ▶ 16:15–17:00 Discussion, questions, etc.

- ▶ 09:10-09:20 Welcome
- ▶ 09:20–10:00 Introduction and background
- ▶ 10:00–10:30 Linear models I
- ▶ 10:30–11:00 **Coffee break**
- ▶ 11:00–11:30 Linear models I contd.
- 11:30–11:45 Demonstrations I
- ▶ 11:45–12:15 Linear models II
- ▶ 12:15–13:30 Lunch
- ▶ 13:30–14:00 Linear models II contd
- ▶ 14:00–14:30 Advanced mixed models
- ▶ 14:30–15:00 Demonstrations II
- ► 15:00–15:30 **Coffee break**
- ▶ 15:30–16:15 High-dimensional traits, gene expression
- ▶ 16:15–17:00 Discussion, questions, etc.

- ▶ 09:10-09:20 Welcome
- ▶ 09:20–10:00 Introduction and background
- ▶ 10:00–10:30 Linear models I
- ▶ 10:30–11:00 **Coffee break**
- ▶ 11:00–11:30 Linear models I contd.
- ▶ 11:30–11:45 Demonstrations I
- ► 11:45–12:15 Linear models II
- ▶ 12:15–13:30 Lunch
- ▶ 13:30–14:00 Linear models II contd.
- ▶ 14:00–14:30 Advanced mixed models
- ▶ 14:30–15:00 Demonstrations II
- ▶ 15:00–15:30 **Coffee break**
- ▶ 15:30–16:15 High-dimensional traits, gene expression
- ▶ 16:15–17:00 Discussion, questions, etc.

- ▶ 09:10-09:20 Welcome
- ▶ 09:20–10:00 Introduction and background
- ► 10:00–10:30 Linear models I
- ▶ 10:30–11:00 **Coffee break**
- ▶ 11:00–11:30 Linear models I contd.
- ▶ 11:30–11:45 Demonstrations I
- ▶ 11:45–12:15 Linear models II
- ▶ 12:15–13:30 Lunch
- ▶ 13:30–14:00 Linear models II contd.
- ▶ 14:00–14:30 Advanced mixed models
- ▶ 14:30–15:00 Demonstrations II
- ▶ 15:00–15:30 **Coffee break**
- ▶ 15:30–16:15 High-dimensional traits, gene expression
- ▶ 16:15–17:00 Discussion, questions, etc.

Outline

Outline

Why QTL mapping

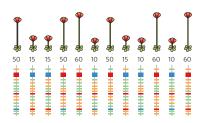
Terminology & background

Methodological challenges

Tutorial outline & resources

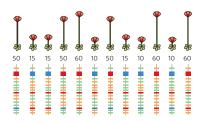
Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs) microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression. . . .



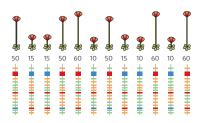
Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, . . .



Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, . . .



Given:

- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, . . .

Goal:

Identify causal loci that explain phenotypic differences.

Given:

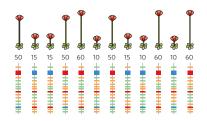
- Genotype for multiple individuals
 - Single nucleotide polymorphisms (SNPs), microsatelite markers
- Quantitative traits (phenotypes) for the same individuals
 - disease, height, gene-expression, . . .

Goal:

▶ Identify causal loci that explain phenotypic differences.

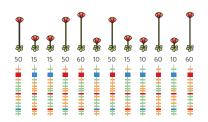
Use of GWAs in plant systems

- Basic biology
 - Understand the makeup of molecular pathways
 - Dissect the genetic component of natural variation.
 - Genotype-environment interactions
- Breeding
 - Mine for markers causal for phenotype to assist in breeding decisions.
 - Maximization of yield, pathogene resistance, et



Use of GWAs in plant systems

- Basic biology
 - Understand the makeup of molecular pathways
 - Dissect the genetic component of natural variation.
 - Genotype-environment interactions
- Breeding
 - Mine for markers causal for phenotype to assist in breeding decisions.
 - Maximization of yield, pathogene resistance, etc



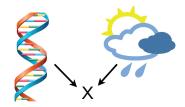
Use of GWAs in plant systems

Basic biology

- Understand the makeup of molecular pathways
- Dissect the genetic component of natural variation.
- Genotype-environment interactions

Breeding

- Mine for markers causal for phenotype to assist in breeding decisions.
- Maximization of yield, pathogene resistance, etc.



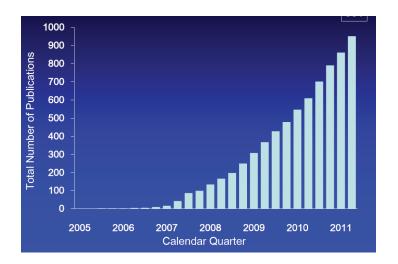
- Adapting treatment to the patients genetic make-up.
 - Targeting patients who can benefit.
 - Appropriate dosage of a drug by using genetic variants to understand drug metabolism (e.g., anti-depressants, beta blockers, opioid analgesics).
 - Disease subcategorization
- Risk prediction
 - Known causal variants help to identify individuals with higher risk to develop a particular disease.
 - Improved monitoring of high-risk groups.

ATGTTGAATCTG
AAAGTGAAATGT
TATTATACGAAG
AAGTATTTGCTA
GACCTCAAAACC.
CTTCATCATAAAC

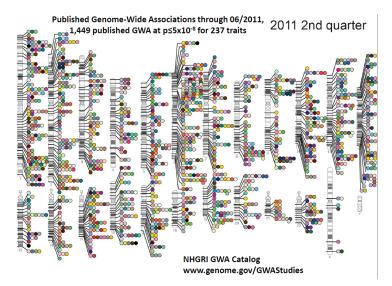
- Adapting treatment to the patients genetic make-up.
 - Targeting patients who can benefit.
 - Appropriate dosage of a drug by using genetic variants to understand drug metabolism (e.g., anti-depressants, beta blockers, opioid analgesics).
 - Disease subcategorization
- Risk prediction
 - Known causal variants help to identify individuals with higher risk to develop a particular disease.
 - Improved monitoring of high-risk groups.

ATGTTGAATCTG'
AAAGTGAAATGT'
TATTATACGAAG'
AAGTATTTGCTA'
GACCTCAAAACC.
CTTCATCATAAC.

Publication boost



Publication boost



Outline

Why QTL mapping

Terminology & background

Methodological challenges

Tutorial outline & resources

- Genotype denotes the genetic state of an individual.
 - Denoted by xⁿ for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by yⁿ for individua n.
- ► A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a

ATGACCTGAAACTGGGGGACTGACGTCGGACGGT
ATGACCTGCAACTGGGGGACTGACGTCACGGT
ATGACCTGCAACTGGGGGATTGACTGCAACGGT
ATGACCTGCAACTGGGGGATTGACTGGAACGGT
ATGACCTGCAACTGGGGGATTGACTGAACGGT
ATGACCTGCAACTGGGGGATTGACTGAACGGT
ATGACCTGCAACTGGGGGATTGACTGAACGGT

- Genotype denotes the genetic state of an individual.
 - Denoted by xⁿ for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by yⁿ for individual n.
- A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- ► An allele is the genetic state of a locus

image source: Wikipedia

- Genotype denotes the genetic state of an individual.
 - Denoted by xⁿ for individual n.
- Phenotype denotes the state of a trait of an individual.
 - ▶ Denoted by \mathbf{y}^n for individual n.
- ► A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus.

ATGACCTGGAACTGGGGGATGACGTCGAACGGT ATGACCTGCAACTGGGGGACTGACGTCAACGGT ATGACCTGAACTGGGGGATGACGTCAACGGT ATGACCTGAACTGGGGGATTGACGTGCAACGGT ATGACCTGAACTGGGGGATTGACGTCAACGGT ATGACCTGCAACTGGGGGATTGACGTCAACGGT

- Genotype denotes the genetic state of an individual.
 - ▶ Denoted by \mathbf{x}^n for individual n.
- Phenotype denotes the state of a trait of an individual.
 - Denoted by yⁿ for individual n.
- ► A locus is a position or limited region in the genome.
 - Denoted by x_s for locus (or SNP) s.
- An allele is the genetic state of a locus

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT ATGACCTGCAACTGGGGGACTGACGTCGAACGGT ATGACCTCGAACTGGGGGACTGACGTGCAACGGT ATGACCTGAAACTGGGGGATTGACGTGGAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

A/C

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. *A. thaliana*, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - ► e.g. human
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - e.g. sugar cane is hexaploid.

image source: Wikipedia

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. A. thaliana, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - ► e.g. human
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - e.g. sugar cane is hexaploid.

image source: Wikipedia

More definitions

- An organism/cell is haploid if it only has one chromosome set or identical chromosome sets.
 - e.g. A. thaliana, sperm cells or inbred lab strains
- An organism/cell is diploid if it has two separately inherited homologous chromosomes.
 - e.g. human
- An organism/cell is polyploid if it has more than two homologous chromosomes.
 - e.g. sugar cane is hexaploid.

image source: Wikipedia

Even more definitions

- Haplotype denotes an individual's state of a single set of chromosomes (paternal or maternal).
- A locus is homozygous if the paternal and maternal haplotypes are identical
- A locus is heterozygous if it differs between paternal and maternal haplotypes.

atgacctg**a**aactgggggactgacgtg**g**aacggt atgacctg**c**aactgggga**c**tgacgtg**c**aacggt **A/A**

Even more definitions

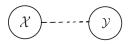
- Haplotype denotes an individual's state of a single set of chromosomes (paternal or maternal).
- A locus is homozygous if the paternal and maternal haplotypes are identical
- A locus is heterozygous if it differs between paternal and maternal haplotypes.

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT ATGACCTGCAACTGGGGGACTGACGTGCAACGGT A/C

4/C

Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association



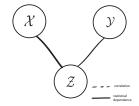
Association is any relationship between two measured quantities that renders them statistically dependent.

- ▶ Direct association
- Indirect association

[Upton and Cook, 2002]

Association is any relationship between two measured quantities that renders them statistically dependent.

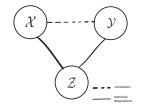
- Direct association
- Indirect association



[Upton and Cook, 2002]

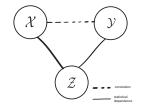
Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - ► Can be beneficial
 - ► Can be harmful
 - e.g.: Population structure



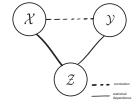
Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial e.g.: Linkage
 - Can be harmful
 e.g.: Population structure



Association is any relationship between two measured quantities that renders them statistically dependent.

- Direct association
- Indirect association
 - Can be beneficial e.g.: Linkage
 - Can be harmful e.g.: Population structure



Result

Example GWAS on A. thaliana

- ► Phenotype: Flowering time at 10 degrees
- Test every SNP in the genome for association with floweringtime
- Position vs. Log10(P-value) (Manhattan plot)

[Atwell et al., 2010]

Result

Example GWAS on A. thaliana

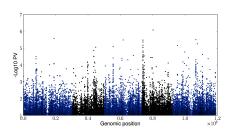
- ► Phenotype: Flowering time at 10 degrees
- ► Test every SNP in the genome for association with floweringtime
- ► Position vs. Log10(P-value) (Manhattan plot)

[Atwell et al., 2010]

Result

Example GWAS on A. thaliana

- Phenotype: Flowering time at 10 degrees
- Test every SNP in the genome for association with floweringtime
- ► Position vs. Log10(P-value) (Manhattan plot)



[Atwell et al., 2010]

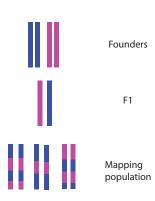
Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- ► Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - ▶ No relatedness
 - ► Typically haploid
- Multi-parent crosses
 - ► Increased genetic diversity
 - ► No relatedness
 - ► Typically haploid



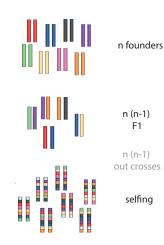
Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - No relatedness
 - ► Typically haploid.
- Multi-parent crosses
 - ► Increased genetic diversity
 - ► No relatedness
 - ► Typically haploid



Genetic designs

- Natural population
 - Global sampling of plants, human or animals.
 - Samples may exhibit varying degrees of relatedness.
 - Typically diploid.
- ► Inbred F2 crosses
 - Mapping of the differences of founder strains
 - Plant- and animal systems
 - No relatedness
 - Typically haploid.
- Multi-parent crosses
 - ► Increased genetic diversity
 - No relatedness
 - ► Typically haploid.



Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous minor allele usually encoded as 2

atgacctg**a**aactggggga**c**tgacgtg**g**aacggt atgacctg**c**aactggggga**c**tgacgtg**c**aacggt

Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous minor allele usually encoded as 2

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT

A/C

Genetic designs Genotype encoding

A simple encoding scheme, ignoring dominance:

- A locus is heterozygous if it differs between paternal and maternal haplotypes.
 - heterozygous allele usually encoded as 1
- A locus is homozygous if it matches between paternal and maternal haplotypes.
 - homozygous major allele usually encoded as 0
 - homozygous minor allele usually encoded as 2

ATGACCTG**A**AACTGGGGGA**C**TGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGA**C**TGACGTG**C**AACGGT

A/A

Linkage Disequilibrium

Physical linkage

- Recombination causes linkage between loci.

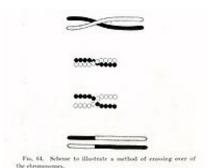


image source: Wikipedia

Linkage Disequilibrium Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost

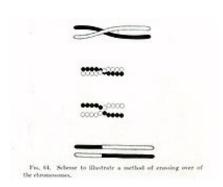
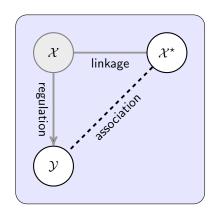


image source: Wikipedia

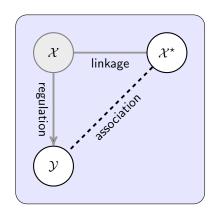
Linkage Disequilibrium Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.



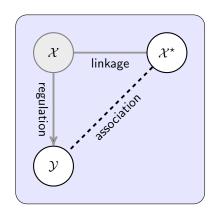
Linkage Disequilibrium Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.



Linkage Disequilibrium Physical linkage

- Recombination causes linkage between loci.
- Linkage is not uniform along the chromosome.
- Recombination hotspots on the chromosome lead to conserved haplotype blocks in strong linkage.
- Linkage can be used to chose tag-SNPs to cover all linked regions.
 - Tradeoff between resolution and genotyping cost.



- Binary
 - case, control
- Continuous
 Gaussian
- Multivariate
- ▶ Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ▶ Images, videos

- Binary
 - case, control
- Continuous
 - Gaussian
 - ► Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ► Images, videos

- Binary
 - case, control
- Continuous
 - Gaussian
 - Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ► Images, videos

- Binary
 - case, control
- Continuous
 - Gaussian
 - ▶ Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ► Images, videos

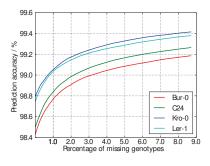
- Binary
 - case, control
- Continuous
 - Gaussian
 - ▶ Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ► Images, videos

- Binary
 - case, control
- Continuous
 - Gaussian
 - ▶ Non-Gaussian
- Multivariate
- Other

- e.g. disease status
- height
- survival time, cell counts
- gene-expression
- ► Images, videos

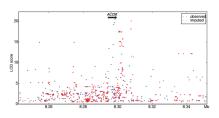
- Imputation of missing values
 - Hidden Markov Models and related approaches
 - Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered our



Genotype imputation accuracy from SNP-chip to 80Genomes reference panel [Cao et al., 2011].

[Browning and Browning, 2009]

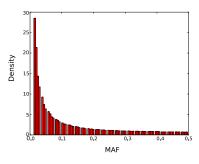
- Imputation of missing values
 - Hidden Markov Models and related approaches
 - Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered out



Genotype imputation accuracy from SNP-chip to 80Genomes reference panel [Cao et al., 2011].

[Browning and Browning, 2009]

- Imputation of missing values
 - Hidden Markov Models and related approaches
 - Beagle, IMPUTE
- In GWAS based on full sequencing data, some alleles may be rare or even private.
 - Model designs need to be adapted
 - Rare variances filtered out



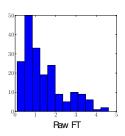
Minor allele frequency from 160 *A. thaliana* lines; 2.3 million genome-wide SNPs from NGS sequencing

[Browning and Browning, 2009]

- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - ▶ Use of prior knowledge
 - Growth rates, generation doubling time. etc.
 - Variance stabilization

[Spitzer, 1982]

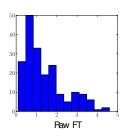
- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - ▶ Use of prior knowledge
 - Growth rates, generation doubling time_etc
 - Variance stabilization
 - Box-Cox transformation



Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

[Spitzer, 1982]

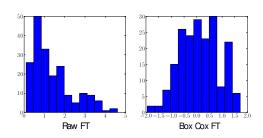
- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization
 - ▶ Box-Cox transformation



Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

[Spitzer, 1982]

- Most parametric models are based on Gaussianity assumptions
- Phenotype residuals are often non-Gaussian
- Phenotype transformation on suitable scale
 - Use of prior knowledge
 - Growth rates, generation doubling time, etc.
 - Variance stabilization
 - ► Box-Cox transformation



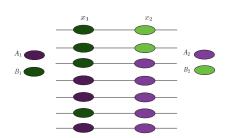
Raw and Box-Cox transformed flowering phenotypes at 10C [Atwell et al., 2010].

[Spitzer, 1982]

Linkage Disequilibrium

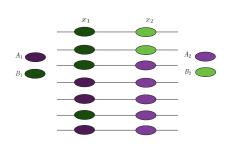
Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x₁ and x₂ are D and r².



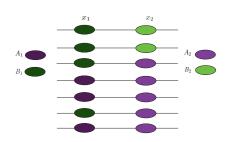
▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of I D.

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x₁ and x₂ are D and r².



▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x₁ and x₂ are D and r².



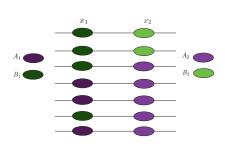
▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x₁ and x₂ are D and r².

$$D = f_{AA} - f_{.A}f_{A.}.$$

$$P^{2} = \frac{D^{2}}{f_{AA}f_{AB}f_{BA}f_{BB}}$$

▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD.



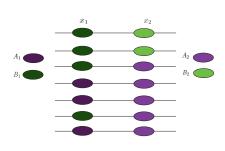
	$x_2 = A_2$	$x_2 = B_2$	
$ \begin{array}{c} x_1 = A_1 \\ x_1 = B_1 \end{array} $	f_{AA} f_{BA}	f_{AB} f_{BB}	f_A . f_B .
	$f_{\cdot A}$	$f_{.B}$	

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x_1 and x_2 are Dand r^2 .

$$D = f_{AA} - f_{.A}f_{A.}.$$

$$T^2 = \frac{D^2}{\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2}$$

▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD



	$x_2 = A_2$	$x_2 = B_2$	
$ \begin{array}{c} x_1 = A_1 \\ x_1 = B_1 \end{array} $	f_{AA} f_{BA}	f_{AB} f_{BB}	f_{A} . f_{B} .
	$f_{\cdot A}$	$f_{.B}$	

Linkage Disequilibrium

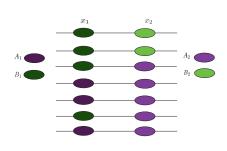
Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x_1 and x_2 are Dand r^2 .

$$D = f_{AA} - f_{.A}f_{A.}.$$

$$r^2 = \frac{D^2}{f_{AA}f_{AB}f_{BA}f_{BB}}$$

▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD



	$x_2 = A_2$	$x_2 = B_2$	
$x_1 = A_1$ $x_1 = B_1$	$f_{AA} f_{BA}$	f_{AB} f_{BB}	f_A . f_B
	f. A	$f_{.B}$	

Linkage Disequilibrium

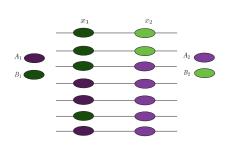
Gametic Phase Disequilibrium

- Association between two loci.
- Deviation from random co-inheritance between loci.
- LD can be caused by recombination, population structure, epistasis
- Measures of LD between two loci x_1 and x_2 are Dand r^2 .

$$D = f_{AA} - f_{.A}f_{A.}.$$

$$r^2 = \frac{D^2}{f_{AA}f_{AB}f_{BA}f_{BB}}$$

▶ $D \neq 0$ and $r^2 \neq 0$ are indicators of LD.



	$x_2 = A_2$	$x_2 = B_2$	
$\begin{array}{c} x_1 = A_1 \\ x_1 = B_1 \end{array}$	f_{AA} f_{BA}	f_{AB} f_{BB}	f_A .
	f. A	$f_{.B}$	12.

Outline

Why QTL mapping

Terminology & background

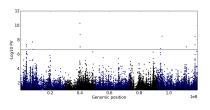
Methodological challenges

Tutorial outline & resources

Challenges

Multiple hypothesis testing

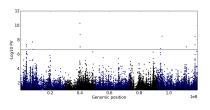
- ► In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!



Challenges

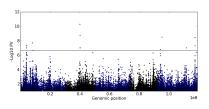
Multiple hypothesis testing

- ► In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!



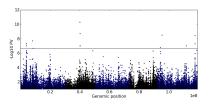
Multiple hypothesis testing

- ► In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!



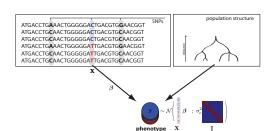
Multiple hypothesis testing

- ► In GWAS, the number of statistical tests commonly is on the order of 10⁶.
- At significane level of 0.01 we would expect 10,000 false positives
- ► Thus, individual P-values < 0.01 are not significant anymore.
- Correction for multiple hypothesis testing is critical!



Population structure

- Confounding structure leads to false positives.
 - Population structure
 - ► Family structure
 - Cryptic relatedness



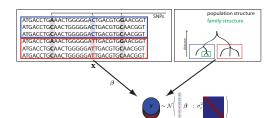
Population structure

- Confounding structure leads to false positives.
 - ► Population structure
 - Family structure
 - Cryptic relatedness



Population structure

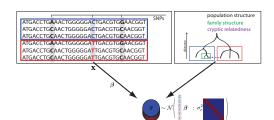
- Confounding structure leads to false positives.
 - Population structure
 - ► Family structure
 - Cryptic relatedness



phenotype

Population structure

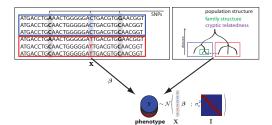
- Confounding structure leads to false positives.
 - Population structure
 - ► Family structure
 - Cryptic relatedness



phenotype

Population structure

- Confounding structure leads to false positives.
 - Population structure
 - ► Family structure
 - Cryptic relatedness



Challenges Population structure

- GWA on inflammatory bowel disease (WTCCC)
- ▶ 3.4k cases, 11.9k controls
- Methods

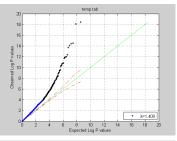
Linear regression
Likelihood ratio test

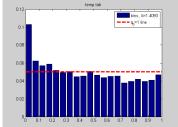
Challenges Population structure

- GWA on inflammatory bowel disease (WTCCC)
- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

Population structure

- GWA on inflammatory bowel disease (WTCCC)
- ▶ 3.4k cases, 11.9k controls
- Methods
 - Linear regression
 - Likelihood ratio test

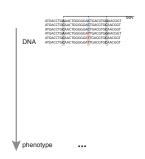




September 2012

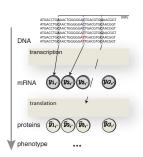
Background variation and confounding

- Genotype is not the sole cause of phenotype variability
- Environment (known and unknown)
- Covariates



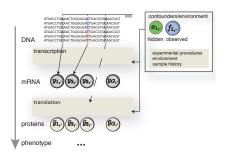
Background variation and confounding

- Genotype is not the sole cause of phenotype variability
- Environment (known and unknown)
- Covariates



Background variation and confounding

- Genotype is not the sole cause of phenotype variability
- Environment (known and unknown)
- Covariates



Statistical power and resolution

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- ► Increase power by
- Conditioning on known effects
 - Cultuluolillig uti kilowit ellecis
 - resume compound hypotheses (e.g.
 - test all (rare) variants in a window)

Statistical power and resolution

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- ▶ Increase power by
- Conditioning on known effects
 - Festing compound hypotheses (e.g.
 - test all (rare) variants in a window)

Statistical power and resolution

- Small number of samples, large number of hypotheses
- ► Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by

Statistical power and resolution

- Small number of samples, large number of hypotheses
- ► Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on known effects
 - > Testion commound hunothese
 - test all (rare) variants in a window)

Statistical power and resolution

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on known effects
 - ► Testing compound hypotheses (e.g. test all (rare) variants in a window)

Statistical power and resolution

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on known effects
 - ► Testing compound hypotheses (e.g. test all (rare) variants in a window)

Statistical power and resolution

- Small number of samples, large number of hypotheses
- Rare variants
- Small effect sizes
- Complex phenotypes have multiple regulators
- Increase power by
 - Conditioning on known effects
 - Testing compound hypotheses (e.g. test all (rare) variants in a window)

Non-independent traits

- Measured expression levels for thousands of genes
- Growth related phenotypes
 - e.g. weight, BMI
- Increase power by exploiting phenotype correlations
- Use correlations to estimate hidden common causes

Non-independent traits

- Measured expression levels for thousands of genes
- Growth related phenotypes
 - e.g. weight, BMI
- Increase power by exploiting phenotype correlations
- Use correlations to estimate hidden common causes

Non-independent traits

- Measured expression levels for thousands of genes
- Growth related phenotypes
 - e.g. weight, BMI
- Increase power by exploiting phenotype correlations
- Use correlations to estimate hidden common causes

Non-independent traits

- Measured expression levels for thousands of genes
- Growth related phenotypes
 - e.g. weight, BMI
- Increase power by exploiting phenotype correlations
- Use correlations to estimate hidden common causes

Non-independent traits

- Measured expression levels for thousands of genes
- Growth related phenotypes
 - e.g. weight, BMI
- Increase power by exploiting phenotype correlations
- Use correlations to estimate hidden common causes

Outline

Why QTL mapping

Terminology & background

Methodological challenges

Tutorial outline & resources

- Linear models 1
 - Significance testing, multiple hypothesis correction, correction for population structure
- Linear models 2
 - Composite variance analysis, multi-trait models, phenotype prediction, LASSO
- Advanced topics
 - Improved linear mixed models
 - Association mapping of high-dimensional traits
- Practical demonstations and demos to take away
- ▶ Opportunities for open discussion, questions and scientific exchange

- Linear models 1
 - Significance testing, multiple hypothesis correction, correction for population structure
- Linear models 2
 - Composite variance analysis, multi-trait models, phenotype prediction, LASSO
- Advanced topics
 - Improved linear mixed models
 - Association mapping of high-dimensional traits
- Practical demonstations and demos to take away
- ▶ Opportunities for open discussion, questions and scientific exchange

- Linear models 1
 - Significance testing, multiple hypothesis correction, correction for population structure
- Linear models 2
 - Composite variance analysis, multi-trait models, phenotype prediction, LASSO
- Advanced topics
 - Improved linear mixed models
 - Association mapping of high-dimensional traits
- Practical demonstations and demos to take away
- ▶ Opportunities for open discussion, questions and scientific exchange

- Linear models 1
 - Significance testing, multiple hypothesis correction, correction for population structure
- Linear models 2
 - Composite variance analysis, multi-trait models, phenotype prediction, LASSO
- Advanced topics
 - Improved linear mixed models
 - Association mapping of high-dimensional traits
- Practical demonstations and demos to take away
- ▶ Opportunities for open discussion, questions and scientific exchange

- Linear models 1
 - Significance testing, multiple hypothesis correction, correction for population structure
- Linear models 2
 - Composite variance analysis, multi-trait models, phenotype prediction, LASSO
- Advanced topics
 - Improved linear mixed models
 - Association mapping of high-dimensional traits
- Practical demonstations and demos to take away
- Opportunities for open discussion, questions and scientific exchange

- ► Large-scale genome-wide association studies
- ▶ Command line tool
- Correction for population structure on up to 100k samples
- http://mscompbio.codeplex.com

[Lippert et al., 2011]

- ► Large-scale genome-wide association studies
- Command line tool
- Correction for population structure on up to 100k samples
- http://mscompbio.codeplex.com

[Lippert et al., 2011]

- Large-scale genome-wide association studies
- Command line tool
- Correction for population structure on up to 100k samples
- http://mscompbio.codeplex.com

[Lippert et al., 2011]

- Large-scale genome-wide association studies
- Command line tool
- Correction for population structure on up to 100k samples
- http://mscompbio.codeplex.com

[Lippert et al., 2011]

Software used in examples

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- ▶ http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- ▶ Multi-trait models
- Latent variable models
- ▶ http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- ▶ Latent variable models
- ▶ http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- ▶ http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- ▶ http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- http://github.com/PMBio/limix

- ▶ Efficient open source C++ toolbox for advanced GWAS analyses
- Modular python interface (R coming soon)
- Variance component estimation
- Complex covariance modeling
- Multi-trait models
- Latent variable models
- ▶ http://github.com/PMBio/limix

Resources

Datasets and resources used in this tutorial

- ► Wellcome Trust Case Control Consortium [Burton et al., 2007]
 - ▶ Data access and details: http://www.wtccc.org.uk/.
- A. thliana GWAS on 107 phenotypes [Atwell et al., 2010]
 - Data publicly available https://cynin.gmi.oeaw.ac.at/home/resources/atpolydb/ genomic-polymorphism-data-in-arabidopsis-thaliana
- eQTL datasets from yeast [Smith and Kruglyak, 2008]
 - ▶ Data is also included in the examples of PEER [Stegle et al., 2012]
 - Data download: http://www.nature.com/nprot/journal/v7/n3/ extref/nprot.2011.457-S1.zip

Tutorial outline & resources

Questions?

Acknowledgements

Why QTL mapping Detlef Weigel, Karsten Borgwardt

References I

- S. Atwell, Y. Huang, B. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, A. Tarone, T. Hu, et al. Genome-wide association study of 107 phenotypes in arabidopsis thaliana inbred lines. *Nature*, 465(7298):627–631, 2010.
- B. Browning and S. Browning. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. The American Journal of Human Genetics, 84(2):210–223, 2009.
- P. Burton, D. Clayton, L. Cardon, N. Craddock, P. Deloukas, A. Duncanson, D. Kwiatkowski, M. McCarthy, W. Ouwehand, N. Samani, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature*, 447(7145):661–678, 2007.
- J. Cao, K. Schneeberger, S. Ossowski, T. Günther, S. Bender, J. Fitz, D. Koenig, C. Lanz, O. Stegle, C. Lippert, X. Wang, F. Ott, J. Müller, C. Alonso-Blanco, K. Borgwardt, K. Schmid, and D. Weigel. Whole-genome sequencing of multiple arabidopsis thaliana populations. Nature Genetics, 43(10):956–963, 10 2011. doi: 10.1038/ng.911.
- C. Lippert, J. Listgarten, Y. Liu, C. Kadie, R. Davidson, and D. Heckerman. Fast linear mixed models for genome-wide association studies. *Nature Methods*, 8(10):838;835, 10 2011. doi: 10.1038/nmeth.1681.
- E. Smith and L. Kruglyak. Gene–environment interaction in yeast gene expression. PLoS biology, 6(4):e83, 2008.

References II

- J. Spitzer. A primer on box-cox estimation. The Review of Economics and Statistics, 64(2): 307–313, 1982.
- O. Stegle, L. Parts, M. Piipari, J. Winn, and R. Durbin. Using probabilistic estimation of expression residuals (peer) to obtain increased power and interpretability of gene expression analyses. *Nature Protocols*, 7(3):500–507, 2012.
- G. Upton and I. Cook. Oxford dictionary of statistics, 2002.