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Population Structure Population structure

Correcting for population stratification using linear mixed models

I Confounding structure leads
to false positives.

I Population structure
I Family structure
I Cryptic relatedness

I Genetic similarity matrix K
I Estimated from SNP data
I models the probability

that two individuals share
causal SNPs.
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Population Structure Population structure

A graphical model view of GWAS

I Goal: genotype-phenotype
relatioships

I Associations via linkage
disequislibrium

I SNPs confounded by
population structure

I Spurious associations if not
taken into account

I Alternatively condition on
causal SNPs

regu
lation

XS

Y

A LMM accounts for model misspecification when testing a univariate model

when in reality the trait is multi-factorial.
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Population Structure Population structure

Linear mixed models
Bayesian linear regression view

I A LMM accounts for model misspecification when testing a univariate
model when in reality the trait is multi-factorial.

I For linear similarities, a LMM is equivalent to a linear regression.

I All SNPs are used as regression covariates.

I Uncertainty about identity of regulative SNPs expressed by using a
Bayesian prior distribution on the regression weights.

N
(
y|xβ;σ2

gK+ σ2
eI
)
.

∝
∫
N
(
y|xβ + X̃θ;σ2

eδI
)
· N

(
θ|0;σ2

gI
)
dθ.

Can we do better than using all SNPs for correction?
→ Select SNPs by their association to the phenotype.

[Listgarten et al., 2012]
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Population Structure Population structure

FaST-LMM select

I Compute similarity matrix
based on highly associated
SNPs

I Equivalent to linear
regression conditioned on
these SNPs

I Conditioning on SNPs in
LD blocks association.
→ False negative results!

I Remove SNPs in LD from
computation of similarity
matrix

regulation

linkage

as
so

cia
tio

n

X1 X2 XS

P

. . . X ? X †

Y

[Listgarten et al., 2012]
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Population Structure Population structure

Proximal contamination

I SNPs that are in close proximity on the chromosome are highly correlated.

I Having a SNP in the similarity matrix that is close to the SNP tested is
equivalent to conditioning on this SNP in the null-model.

I Correct by removing a sliding window around test-SNP from the similarity
matrix.

I Correction is computed efficiently by subtracting a low-rank term.

N
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eI
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∝
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Proximal contamination

I SNPs that are in close proximity on the chromosome are highly correlated.

I Having a SNP in the similarity matrix that is close to the SNP tested is
equivalent to conditioning on this SNP in the null-model.

I Correct by removing a sliding window around test-SNP from the similarity
matrix.

I Correction is computed efficiently by subtracting a low-rank term.

I Proximal contamination on IBD
phenotype [WTCCC, 2007]

I Test SNPs are equally distant
sampled along the chromosome

I Compute 6 similarity matrices
containing same number of SNPs
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Power study

I 3000 individuals

I Two populations (6:4)

I Balding-Nichols model

I 100000 non-causal
SNPs

I 100 causal SNPs
(σ2

g = σ2
e = 0.1)

I Test-set of 5100 SNPs

[Listgarten et al., 2012]

C. Lippert & O. Stegle Linear models III: Improved linear mixed models September 2012 7



Population Structure Population structure

Inflammatory bowel disease [WTCCC, Nature 2007]

Algorithm*parameters* Algorithm*performance*

Name% SNP$
selection$
method$

#SNPs$
in$
matrix$

Avoid$
prox$
conta
m$

λGC% False%
Positives%

True%
Positives%

Runtime%(min)%
without%
speedup%

Runtime%(min)%
with%speedup%

Memory%
use%(GB)%

FaST?LMM?Select% Select% 310% yes% 1.08% 0% 100% 1.3%x%103% 45% <1%
FaST?LMM%all% All% All% yes% 1.09% 2% 108% 4.0%x%106% 4567% 86%

FaST?LMM%orig%310% Equi?spaced% 310% yes% 1.26% 15% 128% 1.1%x%103% 6% <1%
FaST?LMM%orig%4K% Equi?spaced% 4000% yes% 1.17% 8% 114% 2.1%x%105% 30% 2%

Traditional% All% All% no% 0.97% 2% 64% 42% NA% 45%

%
SNPs considered True Positive if:

I Reported in WTCCC paper [WTCCC, Nature 2007]

I Reported in meta analysis [Franke et al., Nat Gen 2010]

I In major histocompatibility complex (MHC) region

[Burton et al., 2007]
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Conclusions

I Relationship between linear mixed
models and multi-variate modelling
using linear regression

I Computing genetic similarities on
associated SNPs improves correction
FaST-LMM select

I Inclusion of SNPs in LD to the SNP
tested causes deflated tests (proximal
contamination)

I Efficient exclusion of SNPs in LD from
the similarity matrix feasible using
low-rank updates

N
(
y|xβ;σ2

gX̃X̃
T
+ σ

2
eI
)
.

∝
∫
N
(
y|xβ + X̃θ;σ

2
eδI
)
· N

(
θ|0;σ2

gI
)

dθ.
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